

PICO40L Geant4 neutron background simulations

Arthur Plante and Chen Wen Chao

June 13, 2018

Outline

- Introduction
- PICO40L detector overview

- Neutron background
- Geant4 geometry and simulations

Introduction

Motivations

- Neutrons are one of the main background for dark matter searches with bubble chambers
- Knowledge on neutron production mechanism is required
- Complete detector simulations must be performed to predict the number of single/multiple bubble events generated by neutrons

PICO40L

Detector characteristics

- C₃F₈ bubble chamber containing 40L of active volume
- Pressure vessel increased diameter (24 inches PICO60 vs 36 inches PICO40L)
- Component with high concentration of contaminants moved further away from active liquid → lower background
- Rightside up design removes possible issues with water identified in the past.
- Top section is hot (15°) and bottom section is cold (-25°) .
- Freon in contact with bellows is cold → no bubbles.

Backgrounds

- Alpha background→
 Acoustic discrimination
- Gamma background ightarrow 10^{-10} rejection at 3.3 keV

- Neutron background → Two production mechanisms:
 - Muon induced neutron interacting with the rock
 - • Neutrons produced by intrinsic contamination of the components by $^{238}\rm{U},^{235}\rm{U}$ and $^{232}\rm{Th}$

Geant4 simulations performed to:

 Predict # of single and multiple bubble events produced by neutrons due to the contamination of ²³⁸U, ²³⁵U and ²³²Th

Neutron energy spectrum and fluence

Processes

Neutrons are produced via 3 different processes:

- Spontaneous fission
- Delayed neutrons following fission
- (α,n) reactions

To decrease fluence:

- Select material of components (lower A \rightarrow higher neutron yield)
- Select materials with low contamination levels (https://www.snolab.ca/users/services/gamma-assay/ and https://www.radiopurity.org/)

SolidWorks to gdm

PICO40L simulations

- Use GDML(Geometry Description Markup Language) for PICO40L geometry
- Use McCad to translate STEP file into GDML format
- McCad can also translate STEP file into MCNP
- Automated geometry production
- Starting from SLDWorks file the PICO40L geometry can be build within a day.

GDML and McCAD

Why use GDML?

- GDML is based on XML (Extensible Markup Language)→
 Simple, easy to read and modular!
- \bullet GDML is application independent \to Compatible with Geant4, McCAD and ROOT!

Why use McCAD?

- McCAD can decompose (more precise). It does not approximate!
- ullet Files are smaller than approximating methods o faster!
- ullet Can translate STEP files into both MCNP and Geant4 ullet Direct comparison possible (not tested yet)
- \bullet Made it possible to have automated geometry production \to Remove possible human errors when writting components and their positionning.
- Much faster to produce geometries

Important components

Several factors can increase neutron background:

- Close to the active volume:
 - Titanium flanges + o-rings (NBR) + spacers (PTFE)
 - Bellows and their flanges (SS)
 - Quartz vessel
 - Copper heating plates
 - Piezo-electric sensors
 - Mineral oil
- Massive components
 - Pressure vessel
 - Mineral oil
- High neutron yield
 - Cameras
 - Lenses
 - Retroreflector

Pressure vessel

Internals

Geant4 simulation

Some preliminary numbers

	PICO40L	PICO60
Components	Leakage probability	Leakage probability
	singles(multiples) $ imes$ 10^{-4}	singles(multiples) $ imes$ 10^{-4}
Quartz jar	800(2500)	788(2300)
Camera	0.62(2.2)	10(29)
Retro reflector	2.5(8.5)	86(222)
Pressure vessel	0.056(0.19)	6.8(19)

- Leakage probability = Bubbles / simulated neutrons
- Compares only geometrical features
- Does not take into account decreases in contamination levels
- Does not take into account mass of the components

Conclusion

- PICO40L neutron background prediction is lower than PICO60
- McCAD is really useful; great for large amount of simple geometries.
- Limitations: Conical shapes and torus and other complex geometries.
- Good news: people are still working on improving McCAD and we are in contact with them.
- Need to start working on translation of STEP file to MCNP
- Package available in a docker container soon
- Will be released on GitHub in near future
- Contact me: plante@lps.umontreal.ca or Chen: chen@lps.umontreal.ca

Conclusion

Neutron energy spectrum and fluence SOURCES4C

Neutrons energy spectrum and fluence is calculated with SOURCES4C Inputs:

- Atomic fraction of the material
- Decay chain of contaminant (²³⁸U, ²³⁵U, ²³²Th)
- Isotopic content of elements present in the material

Outputs:

- Neutron yield of the different processes (n/s/ppb/g)
- Neutron energy spectrum (required for simulations)

Limitations:

- Neutron energy spectrum is not precise (0.5 MeV bins)
- Does not contains a full library of the cross section.
- In the future : Neucbot!