

Searches for new physics at ATLAS

Kate Pachal Simon Fraser University on behalf of the ATLAS Collaboration

Introduction

- ATLAS has been collecting data since 2010, now nearing end of Run 2
- Searches for new physics have been a primary motivator for LHC physics program
- · We haven't found anything yet
- Should we despair? ...

Problems!

Dark matter Hierarchy problem Gauge unification Higgs fine-tuning

Obligatory ATLAS experiment slide

Using simplified models, summaries, and scans to identify research directions

How should we interpret search results so far?

Most important statement in any search: did we find **evidence of new physics**?

- If no, set limits! With limits, analyses prioritise making generalised statements which are as easy as possible to reinterpret in different frameworks
- Simplified models are just spherical cows but give us a framework to understand how our results relate to one another
- Summaries in context of various models help us find holes and plan next steps
 for search program

All models, and therefore all limits, should be taken with a grain of salt! But they are important to let us **contextualise** our zeros.

Example: simplified dark matter models at ATLAS

Example: PMSSM scan

- Use simplified "phenomenological" MSSM as a model generator
 - Throw toy universes with different parameters and check exclusion with analyses
 - Results reported as fraction of models excluded
- Advantages: help us find holes! Disadvantages: difficult to make meaningful statements given sparse sampling of the parameter space

Fraction of Models Excluded

Highlighting undercovered spots

Best limits exclude 1 TeV stop, but not in all models 7

Current results in SUSY

SUSY strong production

- High production σ with boost from 13 TeV -> strong motivation for early run II searches!
- Squark & gluino production gives final states with lots of hadronic activity + MET
- Strong limits with 36/fb!

Recent highlights: SUSY strong production

Events

Recent highlights: **EW SUSY**

- Production σ for EW smaller; • benefited less from CME jump
- Signature: leptons/gauge • bosons+MET. Clean; main bkgs from diboson, ttbar

Highlight:2/31

V

p

11

 $\tilde{\chi}_1^{\pm}$

Recent highlights: EW SUSY

<u>+ arXiv:1806.02293 (New!)</u>

LSP a lot lighter than stop: nice easy signatures, maybe even boosted

Mass splitting smaller than top mass: decays suppressed

Mass splitting really small: "compressed". SM particles so soft they are hard to detect

A challenging corner: Higgsinos

When sufficiently compressed, decays suppressed and Higgsino becomes long-lived: search via **disappearing tracks** (arxiv:1712.02118)

A challenging corner: Higgsinos

When sufficiently compressed, decays suppressed and Higgsino becomes long-lived: search via **disappearing tracks** (arxiv:1712.02118)

RPC meets RPV: Long-lived charginos

RPC meets RPV: Stops

RPC meets RPV: Stops

RPC meets RPV: Stops

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

ATLAS	Preliminary
$\sqrt{s} = 7$, 8, 13 TeV

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7,8$ TeV $\sqrt{s} = 13$ TeV	Reference
rches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \text{ (compressed)}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$	0 mono-jet 0 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets	Yes Yes Yes Yes	36.1 36.1 36.1 36.1	\tilde{q} \tilde{r}	1.17 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{\text{nd}} \text{ gen.} \tilde{q})$ $m(\tilde{q}) \cdot n(\tilde{\chi}_{1}^{0}) < 5 \text{ GeV}$ 2.02 TeV $m(\tilde{\chi}_{1}^{0}) < 00 \text{ GeV}$ 2.01 TeV $m(\tilde{\chi}_{1}^{0}) < 2 \text{ 0 GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$	1712.02332 1711.03301 1712.02332 1712.02332
nclusive Sea	$ \begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell \ell/\nu v)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0} \\ \end{array} $ $ \begin{array}{c} \text{GMSB}(\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \end{array} $	$\frac{1-2\tau+0-1\ell}{2\gamma}$	2 ie 4 ets 7-11 jets 0-2 jets	Yes Yes Yes	et 36.1 3.2 36.1	this scare you:	1.7 TeV $m(\tilde{\chi}_1^0) < 3i$ GeV, 1.87 TeV $m(\tilde{\chi}_1^0) = 0 \leftrightarrow V$ 1.8 TeV $m(\tilde{\chi}_1^0) < 4i$ GeV 2.0 TeV $c_T(NLSE < 0.1 mm)$	1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONE-2017-080
	GGM (higgsino-bino NLSP) Gravitino LSP	γ 0	2 jets mono-jet	Yes Yes	36.1 20.3	<i>š</i> <i>§</i> <i>F</i> ^{1/2} scale 865 GeV	2.05 TeV $m(\tilde{\chi}_1^0)=1 = 0$ GeV, $c\tau(NLSP)<0.1$ mm, $\mu>0$ $m(\tilde{G})>1 \times 10^{-4}$ eV, $m(\tilde{g})=m(\tilde{q})=1.5$ TeV	ATLAS-CONF-2017-080 1502.01518
3 rd gen. <u>§</u> med.	$ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} $	0 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	36.1 36.1	ğ ğ	1.92 TeV m(x̃ ⁰ ₁) 600 GeV 1.97 TeV m(z̃ ⁰) < 200 GeV	1711.01901 1711.01901
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \text{ (natural GMSB)} \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \end{split}$	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b D-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}) \! < \! 420 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! < \! 200 \mathrm{GeV}, m(\tilde{\chi}_{1}^{+}) \! = \! m(\tilde{\chi}_{1}^{0}) \! + \! 100 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{+}) \! = \! 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) \! = \! 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! = \! 1 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! = \! 1 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! = \! 150 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! = \! 0 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! = \! 0 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) \! = \! 0 \mathrm{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau (\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \gamma \ell \end{array} $	$2 e, \mu 2 e, \mu 2 \tau 3 e, \mu 2 - 3 e, \mu e, \mu, \gamma 4 e, \mu \tilde{g} 1 e, \mu + \gamma \tilde{g} 2 \gamma$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}) \!=\! 0 \\ & m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\tau}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} decoupled \\ & m(\tilde{\chi}_{1}^{+}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} decoupled \\ & m(\tilde{\chi}_{2}^{0}) \!=\! m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{2}^{0}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ & c\tau \!<\! 1 nm \\ & d \\ \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0}$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jets - - - - - - - - μ -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c c} \tilde{x}_{1}^{\pm} & 460 \text{ GeV} \\ \tilde{x}_{1}^{\pm} & 495 \text{ GeV} \\ \tilde{s} & 850 \text{ GeV} \\ \tilde{s} & \\ \tilde{s} & \\ \tilde{s} & \\ \tilde{s} & \\ \tilde{x}_{1}^{0} & 537 \text{ GeV} \\ \tilde{x}_{1}^{0} & 440 \text{ GeV} \\ \tilde{x}_{1}^{0} & 1.0 \text{ TeV} \end{array}$	$\begin{split} & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) = 0.2 \; ns \\ & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) < 15 \; ns \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ \hline \mathbf{1.57 \; TeV} \\ & \mathbf{1.57 \; TeV} \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; \tau > 10 \; ns \\ \hline \mathbf{2.37 \; TeV} \\ & \tau(\tilde{g}) = 0.17 \; ns, \; m(\tilde{\chi}_1^0) = 100 \; GeV \\ & 10 < tan\beta < 50 \\ & 1 < \tau(\tilde{\chi}_1^0) < 3 \; ns, \; SPS8 \; model \\ & 7 < c\tau(\tilde{\chi}_1^0) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, $\mu + \tau$ 0 4- 1 e, μ 8- 1 e, μ 8- 0 2 e, μ	- 0-3 <i>b</i> - - 5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes tts - b - b - -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7	$ \begin{array}{c} \tilde{v}_{\tau} \\ \tilde{q}, \tilde{g} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ \tilde{i}_{1} \\ 100-470 \text{ GeV} \\ 480-610 \text{ GeV} \\ \tilde{i}_{1} \\ 0.4 \end{array} $	1.9 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 1.45 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ reV $m(\tilde{\chi}_1^0)>400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2)$ $m(\tilde{\chi}_1^0)>0.2\times m(\tilde{\chi}_1^{\pm}), \lambda_{133}\neq 0$ 1.875 TeV $m(\tilde{\chi}_1^0)=1075 \text{ GeV}$ 2.1 TeV $m(\tilde{\chi}_1^0)=1 \text{ TeV}, \lambda_{112}\neq 0$ 1.65 TeV $m(\tilde{\tau}_1)=1 \text{ TeV}, \lambda_{323}\neq 0$ 4-1.45 TeV $\text{BR}(\tilde{t}_1 \rightarrow be/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other *Only phen simpl	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ a selection of the available mass omena is shown. Many of the lir lified models, c.f. refs. for the as	0 s limits on r mits are bas sumptions	2 c new state sed on made.	Yes s or	20.3 1	[˜] 510 GeV	m($\tilde{\chi}_1^0$)<200 GeV Mass scale [TeV]	1501.01325 16

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

	e, μ, ι, γ	Jets	L _T	$\int \mathcal{L} dt [fb]$	¹] Mass limit	$\sqrt{s} = 7,8$ TeV $\sqrt{s} = 13$ TeV	Reference
setuces $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell)\chi_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) Graviting LSP	0 mono-jet 0 1-2 τ + 0-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 36.1 3.2 36.1 36.1 36.1 20.3		TeV $m(\tilde{x}_{1}^{0}) < 200 \text{ GeV}, m(1^{st} \text{ gen. } \tilde{q}) = m(2^{nd} \text{ gen. } \tilde{q})$ $m(\tilde{q}) + n(\tilde{x}_{1}^{0}) < 5 \text{ GeV}$ 2.02 TeV $m(\tilde{x}_{1}^{0}) < 00 \text{ GeV}$ 2.01 TeV $m(\tilde{x}_{1}^{0}) < 2 0 \text{ GeV}, m(\tilde{x}^{\pm}) = 0.5(m(\tilde{x}_{1}^{0}) + m(\tilde{g}))$ 7 TeV $m(\tilde{x}_{1}^{0}) < 3 0 \text{ GeV},$ 1.87 TeV $m(\tilde{x}_{1}^{0}) = 0 \Rightarrow V$ 1.8 TeV $m(\tilde{x}_{1}^{0}) = 0 \Rightarrow V$ 1.8 TeV $m(\tilde{x}_{1}^{0}) = 0 \Rightarrow V$ 1.8 TeV $m(\tilde{x}_{1}^{0}) = 1 \Rightarrow 0 \text{ GeV}$ 2.15 TeV $c\tau(NLSE < 0.1 \text{ mm}$ 2.05 TeV $m(\tilde{x}_{1}^{0}) = 17 \text{ O GeV}, c\tau(NLSP) < 0.1 \text{ mm}, \mu > 0$ $m(\tilde{x}_{1}^{0}) = 17 \text{ O GeV}, c\tau(NLSP) < 0.1 \text{ mm}, \mu > 0$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 4TLAS-CONF-2017-080
$ \begin{array}{c} \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow t \widetilde{k} \widetilde{\chi}_{1}^{0} \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow t \widetilde{k} \widetilde{\chi}_{1}^{0} \end{array} $	0 0-1 <i>e</i> ,μ	3 <i>b</i> 3 <i>b</i>	Yes	36.1 36.1	ğ 000 000 000 ğ 0	1.92 TeV m(\$\vec{k}_1^0, \$600 GeV) 1.97 TeV m(\$\vec{k}_1^0, \$600 GeV)	1711.01901 1711.01901
$\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0}$ $\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm}$ $\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm}$ $\tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm}$ $\tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $\tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow c\tilde{\chi}_{1}^{0}$ $\tilde{r}_{1}\tilde{r}_{1} \rightarrow c\tilde{\chi}_{1}^{0}$ $\tilde{r}_{1}\tilde{r}_{2} \rightarrow ti \text{ BSB}$ $\tilde{r}_{1}\tilde{r}_{2} \rightarrow ti \text{ BSB}$	0 2 e, μ (SS) 0-2 e, μ 0-2 e, μ 0- 0 2 e, μ (Z) C e, μ (Z)	2 b 1 b 1-2 b -2 jets/1-2 b mono-jet	Yes Yes Yes Ves Yes	36.1 36.1 .7/13.3 0.3/36.1 20.3	\tilde{b}_1 950 GeV \tilde{b}_1 275-700 GeV \tilde{t}_1 117-170 GeV 200-720 GeV 200-720 GeV \tilde{t}_1 90-198 GeV 0.195-1.0 TeV 0.195-1.0 TeV \tilde{t}_1 90-430 GeV \tilde{t}_1 150-600 GeV \tilde{t}_1 150-600 GeV	$\begin{split} m(\tilde{x}_{1}^{0}) &< 420 \text{ GeV} \\ m(\tilde{x}_{1}^{0}) &< 200 \text{ GeV}, m(\tilde{x}_{1}^{\pm}) = m(\tilde{x}_{1}^{0}) + 100 \text{ GeV} \\ m(\tilde{x}_{1}^{\pm}) &= 2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}) = 55 \text{ GeV} \\ m(\tilde{x}_{1}^{0}) &= 1 \text{ GeV} \\ m(\tilde{x}_{1}^{0}) &= 150 \text{ GeV} \\ m(\tilde{x}_{1}^{0}) &> 150 \text{ GeV} \\ \hline \mathbf{fo}_{1}(\tilde{x}_{1}^{0}) &= 0 \text{ GeV} \\ \hline \mathbf{fo}_{1}(\tilde{x}_{1}^{0}) &= 0 \text{ GeV} \\ \hline \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301
$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \ell_{L}\nu\ell_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\ell_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0} \end{array} $	Sim 3 ε,μ 2-3 ε μ		Yes Ves Yes Yes	BP 36.1 36.1	assumptions, str	$ \underset{m(\tilde{k}_{1}^{*})=m(\tilde{k}_{2}^{*})=0, m(\tilde{k}, \tilde{\nu})=0.5(m(\tilde{k}_{1}^{*})+m(\tilde{k}_{1}^{*}))}{m(\tilde{k}_{1}^{*})=m(\tilde{k}_{2}^{*}), m(\tilde{k}_{1}^{*})=0.5(m(\tilde{k}_{1}^{*})+m(\tilde{k}_{1}^{*}))} $	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039
$\begin{array}{c} \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0} \rightarrow W\widetilde{\chi}_{1}^{0}h\widetilde{\chi}_{1}^{0}, h \rightarrow b\widetilde{b}/WW/\tau\tau/\gamma\gamma \\ \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{2,3}^{0} \rightarrow \widetilde{\ell}_{R}\ell \\ \text{GGM (wino NLSP) weak prod., } \widetilde{\chi}_{1}^{0} \rightarrow \text{GGM (bino NLSP) weak prod., } \widetilde{\chi}_{1}^{0} \rightarrow \text{GGM (bino NLSP)} \end{array}$	e, μ, γ $4 e, \mu$ $\gamma \tilde{G} = 1 e, \mu + \gamma$ $\gamma \tilde{G} = 2 \gamma$	0-2 <i>b</i> 0 -	Yes Yes Yes	20.3 20.3 20.3 36.1	Darameter choice	$S_{m(\tilde{k}_{1}^{0})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \text{ decoupled}}^{m(\tilde{k}_{1}^{1})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \text{ decoupled}}_{m(\tilde{k}_{2}^{0})=m(\tilde{k}_{3}^{0}), m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0}))}_{c\tau<1 \text{ mm}}$	1501.07110 1405.5086 1507.05493 ATLAS-CONE-2017-080
$\begin{aligned} \tilde{\mathbf{x}}_{1}^{\dagger} \tilde{\mathbf{x}}_{2}^{0} \rightarrow W \tilde{\mathbf{x}}_{1}^{\dagger} h \tilde{\mathbf{x}}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\mathbf{x}}_{2}^{\dagger} \tilde{\mathbf{x}}_{3}^{0}, \tilde{\mathbf{x}}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \mathbf{GGM} \text{ (wino NLSP) weak prod., } \tilde{\mathbf{x}}_{1}^{0} - \mathbf{GGM} \text{ (bino NL Phote Kerror Constraints} \\ \mathbf{Direct} \tilde{\mathbf{x}}_{1}^{\dagger} \tilde{\mathbf{x}}_{1}^{-} \mathbf{prod., long-lived} \tilde{\mathbf{x}}_{1}^{+} \\ \mathbf{Stable, stopped} \tilde{\mathbf{g}} \mathbf{R} - \mathbf{hadron} \\ \mathbf{Stable} \tilde{\mathbf{g}} \mathbf{R} - \mathbf{hadron} \\ \mathbf{Metastable} \tilde{\mathbf{g}} \mathbf{R} - \mathbf{hadron} \\ \mathbf{Metastable} \tilde{\mathbf{g}} \mathbf{R} - \mathbf{hadron} \\ \mathbf{Metastable} \tilde{\mathbf{g}} \tilde{\mathbf{R}} \\ \mathbf{M} \\ M$	e, μ, γ $4 e, \mu$ $\gamma \tilde{G} = 1 e, \mu + \gamma$ $\gamma \tilde{G} = 2 \gamma$ $dE/dx trk$ $dE/dx trk$ $dE/dx trk$ $displ. vtx$ $1-2 \mu$ 2γ $displ. ee/e\mu/\mu\mu$	0-2 b 0 Sti 1-5 jets	Yes Yes es Yes Yes Yes - Yes - Yes	20.3 20.3 36.1 5.0 18.4 27.9 32.6 19.1 20.3 20.3	ace for a <2 TeV g ace for a <2 TeV g omplicated scena	S $m(\tilde{t}_{1}^{*})=m(\tilde{t}_{2}^{0}), m(\tilde{t}_{1}^{0})=0, \tilde{t}$ decoupled $m(\tilde{t}_{1}^{*})=m(\tilde{t}_{2}^{0}), m(\tilde{t}_{1}^{0})=0, \tilde{t}$ decoupled $m(\tilde{t}_{1}^{*})=m(\tilde{t}_{2}^{0}), m(\tilde{t}_{1}^{0})=0, m(\tilde{t}, \tilde{v})=0.5(m(\tilde{t}_{2}^{0})+m(\tilde{t}_{1}^{0})))$ cr<1mm LUIN(C) $cr<1mm$ cr<1mm $m(\tilde{t}_{1}^{*})-m(\tilde{t}_{1}^{*})\sim160$ MeV, $\tau(\tilde{t}_{1}^{*})<15$ ns $m(\tilde{t}_{1}^{*})-m(\tilde{t}_{1}^{*})\sim160$ MeV, $\tau(\tilde{t}_{1}^{*})<15$ ns $m(\tilde{t}_{1}^{*})=m(\tilde{t}_{1}^{*})\sim160$ MeV, $\tau(\tilde{t}_{1}^{*})<15$ ns $m(\tilde{t}_{1}^{*})=100$ GeV, $10 \mu s < \tau(\tilde{g}) < 1000$ s $m(t_{1})=100$ GeV, $\tau > 10$ ns 2.37 TeV $\tau(g)=0.17$ ns, $m(\tilde{t}_{1}^{*}) = 100$ GeV $10 < tan \beta < 50$ $1 < \tau(\tilde{t}_{1}^{0}) < 3$ ns, SPS8 model $7 < cr(\tilde{t}_{1}^{0}) < 740$ mm, $m(\tilde{g})=1.3$ TeV	1501.07110 1405.5086 1507.05493 ATLAS CONF 2017.080 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
$\begin{aligned} \mathbf{H} & \mathbf{\tilde{o}} \\ \tilde{\mathbf{X}}_{1}^{\dagger} \tilde{\mathbf{X}}_{2}^{0} \rightarrow W \tilde{\mathbf{X}}_{1}^{\dagger} h \tilde{\mathbf{X}}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\mathbf{X}}_{2}^{0} \tilde{\mathbf{X}}_{2}^{0}, \tilde{\mathbf{X}}_{2}^{0}, 3 \rightarrow \tilde{\ell}_{R} \ell \\ \mathbf{GGM} (\text{wino NLSP}) \text{ weak prod., } \tilde{\mathbf{X}}_{1}^{0} - \mathbf{GGM} (\text{bino NL} \textbf{Ehcener} \\ \mathbf{GGM} (\text{bino NL} \textbf{Ehcener} \\ \mathbf{Direct} \tilde{\mathbf{X}}_{1}^{\dagger} \tilde{\mathbf{X}}_{1}^{-} \text{ prod., long-lived} \tilde{\mathbf{X}}_{1}^{+} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{Stable} \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \tilde{\mathbf{X}}_{1}^{0} \rightarrow \tilde{\tau} (\tilde{e}, \tilde{\mu}) + \tau (e, \mu) \\ \text{GMSB}, \tilde{\mathbf{X}}_{1}^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\mathbf{X}}_{1}^{0} \\ \tilde{g} \tilde{g}, \tilde{\mathbf{X}}_{1}^{0} \rightarrow eev / e\mu v / \mu \mu v \\ \\ \text{LFV } pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu / e\tau / \mu \tau \\ \text{Bilinear RPV CMSSM} \\ \tilde{\mathbf{X}}_{1}^{\dagger} \tilde{\mathbf{X}}_{1}^{-}, \tilde{\mathbf{X}}_{1}^{+} \rightarrow W \tilde{\mathbf{X}}_{1}^{0}, \tilde{\mathbf{X}}_{1}^{0} \rightarrow eev, e\mu v, \mu \mu v \\ \tilde{\mathbf{X}}_{1}^{\dagger} \tilde{\mathbf{X}}_{1}^{-}, \tilde{\mathbf{X}}_{1}^{+} \rightarrow W \tilde{\mathbf{X}}_{1}^{0}, \tilde{\mathbf{X}}_{1}^{0} \rightarrow \tau \tau v_{e}, e\tau v_{\tau} \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q q \tilde{\mathbf{X}}_{1}^{0}, \tilde{\mathbf{X}}_{1}^{0} \rightarrow q q q \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow \tilde{\mathbf{X}}_{1}^{1}, \tilde{\mathbf{X}}_{1}^{-} \rightarrow bs \\ \tilde{\mathbf{I}_{1}} \tilde{\mathbf{I}_{1}, \tilde{\mathbf{I}_{1}} \rightarrow bs \\ \tilde{\mathbf{I}_{1}} \tilde{\mathbf{I}_{1}, \tilde{\mathbf{I}_{1}} \rightarrow b\ell \\ \end{aligned}$	e, μ, γ $4 e, \mu$ $\gamma \tilde{G} = e, \mu + \gamma$ $\tilde{G} = 2 \tilde{S}$ $dE/dx trk$ $dE/dx trk$ $dE/dx trk$ $displ. vtx$ $1-2 \mu$ 2γ $displ. ee/e\mu/\mu\mu$ $e\mu, e\tau, \mu\tau$ $2 e, \mu (SS)$ $4 e, \mu$ $3 e, \mu + \tau$ $0 4-5$ $1 e, \mu 8-1$ $1 e, \mu 8-1$ $1 e, \mu 8-2$ $0 2$ $2 e, \mu$	0-2 b 0 Sti 1-5 jets - - - - - - - - - - - - -	Yes Yes Yes Yes Yes Yes Yes Yes Yes the - b - b - - -	20.3 20.3 20.3 36.1 500 18.4 27.9 32.6 19.1 20.3 20.3 3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.1 36.7 36.1	Sarameter choiceace for a <2 TeV g	$S_{m(\tilde{x}_{1}^{0})=m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0})=0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{x}_{1}^{0})=m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0})=0, m(\tilde{\ell}, \tilde{r})=0.5(m(\tilde{x}_{2}^{0})+m(\tilde{x}_{1}^{0})) \\ cr<1 \text{ nm} \\ \textbf{luino}(t_{1}^{0})=0, m(\tilde{\ell}, \tilde{r})=0.5(m(\tilde{x}_{2}^{0})+m(\tilde{x}_{1}^{0})) \\ cr<1 \text{ nm} \\ \textbf{luino}(t_{1}^{0})=0, m(\tilde{\ell}, \tilde{r})=0.5(m(\tilde{x}_{2}^{0})+m(\tilde{x}_{1}^{0})) \\ cr<1 \text{ nm} \\ \textbf{luino}(t_{1}^{0})=0, m(\tilde{\ell}, \tilde{r})=0.5(m(\tilde{x}_{2}^{0})+m(\tilde{x}_{1}^{0})) \\ m(\tilde{\ell}_{1}^{0})=m(\tilde{\ell}, 100 \text{ GeV}, r(\tilde{x}_{1}^{0})<100 \text{ ss} \\ m(\tilde{\ell}_{1}^{0})=0.0 \text{ GeV}, r>0 \text{ ns} \\ \textbf{z}_{37} \text{ TeV} \tau(g)=0.17 \text{ ns}, m(\tilde{k}_{1}^{0})=100 \text{ GeV} \\ 10 < tan \beta < 50 \\ 1 < \tau(\tilde{x}_{1}^{0})<3 \text{ ns}, \text{SPS8 model} \\ 7 < c\tau(\tilde{x}_{1}^{0})<740 \text{ mm}, m(\tilde{g})=1.3 \text{ TeV} \\ \textbf{1.9 TeV} \lambda_{11}=0.11, \lambda_{132/133/233}=0.07 \\ m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm} \\ m(\tilde{k}_{1}^{0})>400 \text{ GeV}, \lambda_{12k}\neq 0 (k=1,2) \\ m(\tilde{k}_{1}^{0})>0.2 \times m(\tilde{k}_{1}^{1}), \lambda_{133}\neq 0 \\ \textbf{s75 TeV} m(\tilde{x}_{1}^{0})=1 \text{ TeV}, \lambda_{112}\neq 0 \\ \textbf{5 TeV} m(\tilde{x}_{1}^{0})=1 \text{ TeV}, \lambda_{233}\neq 0 \\ \textbf{SR}(\tilde{t}_{1}\rightarrow be/\mu)>20\% \\ \textbf{SR}(\tilde{t}_{1}\rightarrow be/\mu)>20\% $	1501.07110 1405.5086 1507.05493 nmoore 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162 1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1704.08493 1710.07171 1710.05544

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

BSM Higgs

The BSM Higgs program

-Additional Higgses.

- Many models (incl. 2HDM) postulate additional Higgs bosons
- Charged higgses or heavier equivalents of SM Higgs

es _____ Higgs to Invisible.

- Look for production of DM particles by decays of SM Higgs
- Uncertainty on SM Higgs production σ is ~30%, so sufficient "wiggle room" to allow this

Recent highlights: Heavy Higgs to ZH

- Search in $Z \rightarrow II$, (another non-SM) $H \rightarrow bb$. Possible additional b-jets in association with A.
- Results framed in 2HDM model with various parameter choices for generality

Events / 136 GeV

10⁷

10⁶

10⁵

10⁴

10³

10²

10

1.0

1.5

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

 $m_H = 300 \text{ GeV}, n_b = 2$

2 b

Data

tŦV

 $ggA, m_A = 550 \text{ GeV}$

W+jets, diboson, Vh

Total uncertainty Pre-fit background

Z+(bb, bc, bl, cc)

Top quarks Z+(cl, l)

(Other) exotics searches

Exotics search methodology

- Largely signature driven
- Each signature open to range of BSM models
- Various dedicated summary or combination efforts in Run II

Exotics search methodology

- Largely signature driven
- Each signature open to range of • **BSM** models
- Various dedicated summary or combination efforts in Run II

Exotics search methodology

Largely signature driven Dibosor Each signature open to range of New (spin-1 Heavy **BSM** models or 2) bosons scalars Various dedicated summary or combination efforts in Run II Black σ (pp→ HVT W' → WZ) [pb] holes ATLAS Preliminary 95% C.L. exclusion limits $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Dark matter HVT model B $g_v=3$ Observed Expected Jet pairs aaaa vaa aa vvaa Compositeness 10^{-2} leav flavour 10^{-3} 2.5 0.5 1.5 2 3 3.5 5 4.5 1 m_w, [TeV]

21

Recent highlights: lepton+MET

$$m_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}^{\rm miss}(1-\cos\phi_{\ell\nu})}$$

ATLAS-CONF-2018-017

- Search for heavy resonances decaying to $e/\mu + \nu$
- W' boson used as benchmark model to define limits
- One of first 80/fb "intermediate" ATLAS results

Recent highlights: TLA

- Dijet final state open to many models.
 Here, look for Z' mediator
- Use jets at trigger level to access low cross section, low mass signals

0.4

0.3

0.25

0.2

0.15

0.1

0.05

100

ATLAS Preliminary April 2018

95% CL upper limits

Observed

ly₁₂^{*}l < 0.3

---- Expected

 $0.35 - \sqrt{s} = 13 \text{ TeV}, 3.6-37.0 \text{ fb}^{-1}$

Axial vector mediator Dirac Dark Matter

200

300

 $m_{DM} = 10 \text{ TeV}$

တိ

m_{z'} [GeV]

Large-*R* jet + ISR, 36.1 arXiv: 1801.08769

Dijet + ISR (γ), 15.5 fb⁻¹

ATLAS-CONF-2016-070

Dijet + ISR (jet), 15.5 fb⁻¹

ATLAS-CONF-2016-070

Dijet TLA, 3.6-29.7 fb-

2000

arXiv: 1804.03496 Dijet, 37.0 fb⁻¹ Phys. Rev. D 96,

052004 (2017)

arxiv:1806.01

6 20

Recent highlights: vector-like quarks

- Example of increasing usage of machine learning in ATLAS: one signal region defined via a BDT!
- Only events not in traditional SR considered in BDT selection

Exotics constraints on dark matter

- Strong constraints from mono-X, dijet(+X), dilepton analysis families
- Public plots out now, see next page!

-2-Higgs doublet model

- More realistic benchmark
- Still simplified, but UV-complete

 Strong constraints from mono-X, heavy flavour analyses

arxiv:1701.07427

• Summary in whitepaper

arxiv:1507.00966

Dark matter: Z' mediator summary

- Results still depend a lot on the assumptions we make, even with just 5 free parameters!
- Plots: axial-vector mediator (vector mediator in backup)
- Top: $g_L = 0.1$, $g_q = 0.1$
- Bottom: $g_L = 0, g_q = 0.25$

Comparing collider DM limits to the rest of the field

Comparing collider DM limits to the rest of the field

- Axial vector mediators, spin dependent limits
- Left: DM-proton cross section.
 Right: DM-neutron cross section.

```
Important to place
collider results in
wider context!
```

Now what?

Up and out

Search program in early Run II focused on low-hanging fruit: strongly produced signatures, simple final states, simple detector needs

Up and out

Now working up the tree: EW SUSY, low mass or low cross section signals are still benefitting from increasing luminosity

Up and out

Lots left to do which is hard to see or hard to access! Really compressed states, long lived particles, signatures with interference...

Improving performance improves analyses!

• Instead of sitting and waiting for a slow accumulation of luminosity, push performance improvements and analysis reach improves.

The BSM landscape at 13 TeV

C

Looked under most of the obvious rocks ...

... time to start getting more complex!

Thanks! Any questions?

Backup

Additional info: SUSY opposite sign dilepton

- "High-p_T lepton search" addresses non-compressed cases where kinematic edge near the Z peak
- "Low-p⊤ lepton search" addresses small ∆m between two lightest neutralinos: compressed scenario
- Simplified model: set masses of all not-relevant particles very high so they decouple
- · Key backgrounds: Z/γ^* + jets, fake leptons, diboson and rare top processes

E^{miss} [GeV]

p_T^{II} [GeV]

21 + no jets shown in main body!

the RJR

analysis!

Additional info: SUSY 2/3 lepton EW search

- The idea: if squarks & gluinos are a lot heavier than sleptons/ charginos/neutralinos, then higher cross sections doesn't benefit them in search
 And go Look up
- Simplified model: take mass-degenerate, pure wino chargino1 & neutralino2; mass-degenerate sleptons
- Many individual signal regions defined by m_{II}, m_{T2}, number of jets, MET, ... Just a few sample distributions shown here!

Additional info: SUSY stop to charm

- Model: stop pair production with flavour violation, allowing decay to charm + LSP, or flavour-conserving charm squark pair production. Assume 100% BR to c+LSP in both.
- Require 2j, >= 1 c-tagged jets, MET, lepton veto. SR's further cut on cjet+MET transverse mass to reduce τ contamination
- Separate signal regions with softer/harder, more/fewer jets for various levels of compression

St, large-R jet mass best BDT variables

Additional info: Exotics VLQs

- Vector-like quarks couple preferentially to 3rd generation and allow flavour-changing neutral currents as well as regular quark-like charged current decays
 - E.g. T VLQ can give T-> (Wb, Zt, Ht)
- Classify events by number of jets, b-jets, leptons.
- RECOSR: 3 large-R jets, one W-tagged. b-jet not near lepton. S_T (scalar sum of MET, lepton, small-R jet pTs) must be large. BDTSR: trained and used on events which do not pass RECOSR.

Vector mediator DM summary plots: leptophobic

Vector mediator DM summary plots: leptophilic

