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Titanium is used pervasively over a range of fields [1], e.g. Ti is ubiquitous in biomedical implants, due to
its low reactivity with the surrounding tissues. When Ti is exposed to air or water the resultant oxide is
strongly adherent and thermodynamically stable, which protects the underlying metal from further oxidation
The ability of Ti to withstand corrosion depends on the quality and characteristics of its unique passive oxide
[2] which in turn depend on oxidation parameters. For example, electrochemically formed oxide films on Ti
can be amorphous or crystalline, depending on the final anodization potential and electrolyte involved [3].
This can directly affect the biocompatibility of Ti, as thickness and crystallinity (rutile vs. anatase) can affect
the degree of adsorption from human blood plasma [4]. Thus understanding the oxidation at an atomistic level
is necessary if one wishes to develop better protective films. Isotopic labeling is used in conjunction with high-
resolution ion depth profiling methods, including medium energy backscattering (MEIS) and nuclear reaction
profiling (NRP) to determine O depth profiles and elucidate the transport and reaction mechanisms of the
oxidation [5]. Magnetron sputtering was used to deposit Ti on Si(001), then exposed to isotopic 180 water
vapour in Ar atmosphere to form an ultra-thin TiO2 film. The TiO2/Ti/Si(001) film was then electrochemically
oxidized in D2160 water over a range of voltages from 0-10 V, resulting in ~40-295 A thick oxide regions. As
oxide thickness increases as a function of anodization voltage while the total concentration of 180 remains
constant, the 180 is found at increasingly greater depths, while the 160 concentration rises monotonically at
the oxide-electrolytle interface indicating O exchange reactions. New titanium oxide is created by 180 being
diffusing towards the oxide-metal interface, all of which is consistent with O ions as a mobile species but
additionally with the Ti ions will transported towards the oxide-oxidant interface resulting in growth at that
interface as well.
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