Status of DEAP-3600 at SNOLAB

Mark Boulay
Carleton University

DEAP-3600 Dark Matter Search

Liquid Argon for DM (Single-phase)

Scattered nucleus detected via scintillation in LAr

Good Pulse-shape discrimination between β/γ and nuclear recoils with scintillation

Argon is easy to purify

Very large target masses possible, no absorption of UV scintillation photons in argon, no pileup until beyond tonne-scale

Position reconstruction allows surface background removal, based on photon detection (~5 cm resolution allows removal of radon daughter events from analysis)

DM Sensitivity

1 tonne fiducial mass (3.6 tonnes total) designed for < 0.2 background events/year, 3 year run

Latest result is from XENON-1T May 2017 (36,000 kg-days). 90%CL corresponds to ~9 events in DEAP

3600 kg argon in sealed ultraclean Acrylic Vessel (1.7 m ID)

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (Light Sensors)

50 cm light guides + PE shielding provide neutron moderation

Steel Shell immersed in 8 m water shield at SNOLAB

Máir Doulay

DEAP Collaboration: 75 researchers in Canada, UK, and Mexico

DEAP Assembly at SNOLAB (2013-2016)

Background	Fiducial No. Events in Energy ROI – 3 live years
Neutrons	<0.2
Surface α's	<0.2
³⁹ Ar β's (natural argon)	<0.2

designed for 1-tonne fiducial mass 3 live years

Fabrication and Assay of DEAP Acrylic

- Fabrication from pure MMA monomer at RPTAsia (Thailand), strict control of radon exposure for all steps, to < 10⁻²⁰ g/g ²¹⁰Pb (RPT was fabricator of the SNO Acrylic Vessel)
- Assay of production acrylic < 2.2x10⁻¹⁹ g/g ²¹⁰Pb
 (Corina Nantais M.Sc. Thesis 2014, <0.2 bkg events/3 years)

Monomer cast at RPT Asia, 2010 Mark Boulay

Thermoformed Panel at RPT Colorado

Bonding light guides to the DEAP AV, underground at SNOLAB

Moving the AV into assembly room

Mark Boulay

DEAP-3600 Detector Assembly

Specular reflector + opaque wrap

Acrylic Light Guide

PE neutron shielding "blocks"

silicone oil coupling

PMT with

Copper sleeve over PMT

2,500 person-weeks of assembly (students, faculty, PDFs, technicians, engineers)

Mark Boulay

Mark Boulay

Mark Boulay

DEAP-3600 status

- First cooldown/fill Feb-August 2016 (gas contamination on August 17th, drained and refilled)
- Detector (re-)filled since Nov 1, 2016, now with ~3300 kg
- Collecting DM search data, approx 80% livetime fraction corresponds to 24,000 kg-days per month exposure.
- So far stable performance, good light yield
- Taking physics and calibration data, plan to continue data collection for ~4 years
- Working on the first analysis from the 1st fill data
- In-situ backgrounds analysis in-progress, in particular calibration of position reconstruction, finalizing cuts

DEAP-3600 Background Reduction

First step is detector design, low-background materials, then...

Current status: α backgrounds, neutron backgrounds, PSD analyses well advanced, in-situ measurements of background levels, finalizing position reconstruction and cuts (in progress). Many details will be presented at CAP.

Experimental Signatures

²³⁸U Decay Chain

Alpha Background

Measuring the ²²²Rn content in the bulk
 LAr shows the well very competitive results

- **Preliminary** ²²²Rn activity

²²²Rn in Dark Matter experiments:

Target	Experiment	Activity [mBq]	
LAr	DEAP-3600	≈0.5 ◀	
LXe	Xenon1T	5.7	
LXe	PandaX	3.9	
LXe	LUX	17.9	

 https://indico.cern.ch/event/432527/contributions/1071738/attachments/ 1321292/1981557/ICHEP2016 EthanBrown v1.pdf

- "Krypton and radon background in the PandaX-i dark matter experiment," JINST 2, 2017.
- "Radon-related backgrounds in the LUX dark matter search," Phys. Procedia, vol. 658, 2015.

Majority of ²¹⁰Po events ¹⁰ on the acrylic surface ⁰

Gamma and Beta Background

Dominant activities from screening or literature values (approximate)

Isotope	Location	Activity [Bq]	specific activity [mBq/kg]	Concentr ation [ppb]
39Ar	LAr	3300	1010	
²³² Th	PMT glass	26	139	34
238 U	PMT glass	169	921	75
⁴⁰ K	acrylic	7.5	≈2	70

Electron Recoil Band Background Model

Background Model in ER Band (0.2 < fprompt < 0.4) MC components scaled to radioassay data

- Empiric energy calibration based on 1460 keV (40K) and 2614 keV (208TI) peak
- Scaling of MC simulations to known screening / literature values (this is not a fit)
- Low energy region (< 0.5 MeV) dominated by 39Ar
- Mid energy region (0.5 2.6 MeV) dominated by gamma from outside components (mainly PMT glass)
- High energy region (> 2.6 MeV) dominated by ⁴²K and beta components from very close ²⁰⁸Tl sources
- Gamma line measurements can be used to constrain (α,n) neutron production

Neutron Background

- Neutrons produced by
 - (α,n) reactions in close and far material
 - fission neutrons
 - cosmogenic neutrons (muon induced)
- Extensive neutron MC campaign using radio-purity assays and (α,n) yields from SOURCES-4C
 - Dominant source is (α,n) in PMT glass (≈70%)
 - Well constrained from γ -background and consistent with target values

Data driven limit on neutron interactions:

- Idea: Eventually all neutrons capture and leave gamma signature
 - 2.2 MeV γ form ¹H in acrylic
 - 6.1 MeV γ-cascade from ⁴⁰Ar in LAr
 - Search for n y coincidences
- Preliminary result:
 - No coincidence found above expected random background
 - Limit on neutron interactions consistent with target value

DEAP Talks at CAP 2017

Presenter	Talk/Session
Bjoern Lehnert	Backgrounds overview/R1-5
Robert Stainforth	Cleaning Data for Dark Matter Search/R2-3
Shawn Westerdale	TPB fluorescence tails/W3-5
Carl Reithmeier	Position reconstruction and MC tuning/POS-40
Stefanie Langrock	Energy and position response/R1-5
Matthew Dunford	Argon Isotopes in DEAP-3600/POS-41
Colin Moore	Veto of Seismicity induced events/W3-5
Ben Broerman	TPB deposition in DEAP-3600/T3-3
Andrew Erlandson	Instrumental events and cosmic ray muons/POS-37
Conner Stone	Machine learning algorithms/T3-3
Joseph McLaughlin	PMT signal saturation correction/M4-3

Beyond DEAP-3600: Sensitivity with Argon

Argon has good sensitivity in high-mass region

DS-20K (20 tonnes argon) competitive with LZ – start operation 2021

1000-tonne years (future detector) reaches down to neutrino floor

Complimentary to xenon – only other target allowing such large exposure

β/γ discrimination: solar pp neutrino ES background not a concern – in xenon expected dominant bkg at ½ event per tonne-year after recoil discrimination

we are currently here

Mark Boulay

New global argon collaboration forming

- Significant international collaboration forming for future argon DM searches (350+ researchers)
- Complementary to LHC searches (exploration of v. high masses with direct search). Complimentary to xenon, will want positive detection in at least two targets.
- Sensitivity increase from 1 tonne × yr → 1,000 tonne × yr
- Beyond DEAP-3600: DS-20K (20 tonnes argon) first step

Future multi-100T detector – "ultimate" v floor sensitivity

- Two crucial technologies
 - Liquid argon target depleted in the radioactive ³⁹Ar (underground argon: Urania and isotopic purification: Aria)

(Underground argon: scale up facility to ~150 kg/day; total gas stream at current facility is ~3 tonnes per day)

SiPMs replacing cryogenic PMTs, in development, R&D

After DS-20K (Argo/DEAP-nT)

- Collaboration will pursue integrated program/common design allowing ktonne-year exposure (single-phase/dual phase both options considered)
- Plan for operation with low-radioactivity argon
- Sensitivity to neutrino floor for high-mass WIMPs
- Timescale follows DS-20K (so mid-2020's)
- Site TBD
- Possibility for solar neutrino measurements
- Some R&D started in Canada, new Cryogenics Facility at Carleton, CAD development of digital SiPM array, some overlap with SiPM development for nEXO (2017 CFI IF request, Carleton, McGill, Sherbrooke, TRIUMF)

Summary

DEAP-3600 collecting data since late 2016!

Preliminary internal background measurements show components are understood. First analysis underway, finalizing calibration of position reconstruction and cuts

11 HQP presentations at CAP – please attend for details!

Full DEAP-3600 run ~4 years, to ~2020

Beyond DEAP-3600:

Significant global collaboration with extensive skills/experience forming toward:

DS-20K at LNGS (20 tonnes argon, 2021 operation)

Future multi-hundred-tonne detector to v floor (mid-2020's, site TBD)

Mark Boulay

END

