# The role of pseudospin in the optical and electronic properties of relativistic materials

#### John D. Malcolm

Ph.D. Thesis, University of Guelph

Supervisor: Prof. Elisabeth J. Nicol



## Motivation: Graphene

The hallmark 'relativistic material'



- Discovered in 2004 (2010 Nobel prize in physics)
- Incredible properties and high potential for technology
- Exhibits remarkable behaviour from a fundamental perspective

Can we find other relativistic materials similar to graphene? What would their properties be? Experimental signatures?

#### Relativistic Condensed Matter

- At low energy, the quasiparticles in graphene are described by the twodimensional massless Dirac-Weyl (DW) Hamiltonian, with an emergent SU(2) spin-1/2 called pseudospin
- This motivates the supposition of condensed matter systems with pseudospin higher than 1/2:

$$\widehat{\mathcal{H}}(\mathbf{k}) = \hbar v \mathbf{\sigma} \cdot \mathbf{k} \to \hbar v \mathbf{S} \cdot \mathbf{k}$$

• The  $\sigma/2$  (spin-1/2 matrices) are replaced with the general spin-s matrices, S. This leads to an energy spectrum depending on spin projections,  $\lambda$ ,

$$\varepsilon_{\lambda}(k) = \lambda \hbar v k, \qquad \lambda = \{-s, -s + 1, \dots s\}$$

Dirac-Weyl Dispersions

- Linear band dispersions that touch at a single point (the **Dirac point**).
- Integer pseudospin systems contain a completely flat band, placing a large density of states at exactly zero energy.
- Systems with psuedospin > 1 are host to nested Dirac cones.



## Dirac-Weyl Magneto-Optics



Phys. Rev. B **90**, 035405 (2014).

- Snowshoe diagrams show allowed optical transitions between Landau levels
- These diagrams help to explain features of magneto-optical conductivity
- Signatures in spectra allow for the potential identification of different pseudospin materials



## Kane Fermion Magneto-Optics

Phys. Rev. B **92**, 035118 (2015) Phys. Rev. B **94**. 224305 (2016)

- Kane model applies to narrowgap zinc-blende materials.
- Massless Kane fermions argued to be hybrid pseudospin-1/2 and 1.
- Used model to accurately match experimental optical conductivity of HgCdTe, which exhibits pseudospin-1 characteristics.



Experimental data from Orlita et al. Nat. Phys. 10, 233 (2014)

## Pseudospin-1 Polarizability

Phys. Rev. B 93, 165433 (2016)

- Analytical derivation of polarizability, describing dielectric properties of pseudospin-1 materials.
- s=1
- Along with many other phenomena, polarizability details plasmonic behaviour (collective charge oscillations).
- Flat band provides large screening effects.





### Thank You!

- J.D. Malcolm and E.J. Nicol, 'Magneto-optics of general pseudospin-s two-dimensional Dirac-Weyl fermions,' Phys. Rev. B **90**, 035405 (2014)
- J.D. Malcolm and E.J. Nicol, 'Magneto-optics of massless Kane fermions: Role of the flat band and unusual Berry phase,' Phys. Rev. B 92, 035118 (2015)
- J.D. Malcolm and E.J. Nicol, 'Frequency-dependent polarizability, plasmons, and screening in the twodimensional pseudospin-1 dice lattice,' Phys. Rev. B 93, 165433 (2016)
- J.D. Malcolm and E.J. Nicol, 'Analytic evaluation of Kane fermion magneto-optics in two and three dimensions,' Phys. Rev. B 94. 224305 (2016)



#### The Dice Lattice

An example of a toy lattice which gives rise to pseudospin-1 DW fermions.





Tight-binding Hamiltonian:

$$\widehat{\mathcal{H}} = t \sum_{\langle ij \rangle} c_i^{\dagger} c_j$$

Diagonalize for energy dispersion:



## The $\alpha$ -T<sub>3</sub> Model



• 2D lattice with variable hopping parameter  $\alpha \in [0,1]$ , allowing continuous tuning between graphene ( $\alpha = 0$ ) and the dice lattice ( $\alpha = 1$ ).

#### Kane Fermions

- 3D model for zinc-blende semiconductors like  $Hg_{1-x}Cd_xTe$
- Large ( $\Delta$ ) and small ( $E_g$ ) tunable gap parameters



| 0                         | $\frac{\sqrt{3}k_{-}}{2}$ | 0                  | 0                        | 0                        | 0                 | 0                        | 0                          |
|---------------------------|---------------------------|--------------------|--------------------------|--------------------------|-------------------|--------------------------|----------------------------|
| $\frac{\sqrt{3}k_{+}}{2}$ | $\frac{E_g}{\hbar v}$     | $-\frac{k_{-}}{2}$ | $-rac{k}{\sqrt{2}}$     | $-rac{k_z}{\sqrt{2}}$   | $-k_z$            | 0                        | 0                          |
| 0                         | $-\frac{k_+}{2}$          | 0                  | 0                        | 0                        | 0                 | $-k_z$                   | 0                          |
| 0                         | $-\frac{k_+}{\sqrt{2}}$   | 0                  | $-rac{\Delta}{\hbar v}$ | 0                        | 0                 | $-rac{k_z}{\sqrt{2}}$   | 0                          |
| 0                         | $-rac{k_z}{\sqrt{2}}$    | 0                  | 0                        | $-rac{\Delta}{\hbar v}$ | 0                 | $-\frac{k}{\sqrt{2}}$    | 0                          |
| 0                         | $-k_z$                    | 0                  | 0                        | 0                        | 0                 | $\frac{k_{-}}{2}$        | 0                          |
| 0                         | 0                         | $-k_z$             | $-rac{k_z}{\sqrt{2}}$   | $-rac{k_+}{\sqrt{2}}$   | $\frac{k_{+}}{2}$ | $rac{E_g}{\hbar v}$     | $-\frac{\sqrt{3}k_{-}}{2}$ |
| 0                         | 0                         | 0                  | 0                        | 0                        | 0                 | $-\frac{\sqrt{3}k_+}{2}$ | 0                          |



## Imaginary Part

- Imaginary part of the polarizability traces out the particle-hole continuum (PHC)
- The PHC traces out
- The PHC is greatly extended compared to graphene because of the flat band







#### Real Part

- Large screening by flat band evident from the logarithmic divergence in the real part
- Plasmon dispersion is calculated from the real part, showing a pinch point invariant to a change in the dielectric background (substrate)





