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Research Context
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Combining the results of laboratory studies and from theoretical models with results from

remote sensing measurements, it is possible to determine the chemical composition and

physical properties of the remote environments. This is the basis of spectroscopic remote

sensing, a technique that is widely used in planetary atmospheric exploration.

Remote sensing 

of planets 
Astronomical sensing

Terrestrial 

imaging

Pollution  

forecasting

Greenhouse gas monitoring
Fire detection

Pictures taken from NCAR website
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➢ What do we need to

measure?
Mainly gases and aerosols

because atmospheric chemistry is

dominated by reactions of trace

constituents, specifically gas

phase radicals, present in parts

per million, billion, trillion.

Questions:

➢ How much of the

change that we

observe in the Earth’s

atmosphere is due to

human activities?

➢ Do we understand the

system Earth well

enough to predict and

quantify the impact of

human activities?

http://www.cawcr.gov.au/projects/climatechange/


Case example: Air pollution studies
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Courtesy of Dr. Pierre Coheur, 
Spectroscopie de l’Atmosphère, 
Université Libre de Bruxelles, Belgium



Analysis details for Fourier transform spectra recorded at different 

sets of  pressure, temperatures and pathlength

• The wavenumber scales were calibrated using line positions in the HITRAN2012
database.

• The interactive multispectrum nonlinear least squares fitting technique (Benner et al.
(1995)) was used to analyze all spectra recorded, simultaneously. It uses the
Levenberg-Marquardt algorithm that minimizes the sum of the squares of the
residuals between the experimental spectra and the spectra calculated using the
fixed and fitted parameters [6].

• Different line shape profiles were applied such as Voigt or Rautian. Including speed-
dependence in our spectral profiles did improve the fit residuals (observed-
calculated). Weak line mixing was necessary to accurately model the absorption.

• Initial values for all line parameters were taken from the HITRAN2012 database.

• Spectral backgrounds (including some channeling), zero transmission levels,
instrument line shapes were appropriately modeled.



Expressions used in retrievals of  broadening and shift 

parameters 
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bL(p,T) is the Lorentz halfwidth (in cm-1) of the spectral line at pressure p and

temperature T, and the broadening coefficient bL
0(Gas)(p0,T0) is the Lorentz halfwidth

of the line at the reference pressure p0 (1 atm) and temperature T0 (296 K), and  is

the ratio of the partial pressure of CO to the total sample pressure in the cell. The

temperature dependence exponents of the pressure-broadening coefficients are n1

and n2.

where 0 is the zero-pressure line position (in cm-1),  is the line position corresponding

to the pressure p, δ0 is the pressure-induced line shift coefficient at the reference

pressure p0(1 atm) and temperature T0(296 K) of the broadening gas (foreign or self

broadener).
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Spectral shape of  an isolated line
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text adapted from slide of Ha Tran, Université 

Paris-Est Créteil and Université Paris Diderot

A. Predoi-Cross, F. Rohart, J.-P. Bouanich, D.R. Hurtmans, Canadian
Journal of Physics, 87 (5) (2009) 485-498.
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Author Name, Title 9CO-He 

Top panel: Overlaid observed minus calculated fit residuals

Bottom panel: A section of the 19 overlaid experimental spectra analyzed applying the

multispectrum nonlinear least squares fitting technique using the speed dependent Voigt profile with

weak line mixing.



Differences between the line positions retrieved in the present study, in HITRAN2012 database 

and the results of  the constrained multispectrum fit analysis reported in Mantz et al. J. Mol. 

Struct. 2005. 
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Einstein A coefficients (s-1)
.. define the probability of emission or absorption of light during a molecular transition.
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Line Broadening Effects
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Images and text adapted from slides of Ha Tran, Université Paris-Est Créteil and Université Paris Diderot



The Voigt Profile
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Images and text adapted from slides of Ha Tran, Université Paris-Est Créteil and Université Paris Diderot



Observed limitations of  the Voigt profile
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Source: Ha Tran, Université Paris-Est Créteil, private communication
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Ref. Ha Tran, Université Paris-Est Créteil, France, private communication.

Why does the Voigt profile have limitations?



Implementations of  Speed Dependence in Spectral Line Profiles

Berman, J. Quant. Spectrosc. Radiat. Transf. 12, 1331 (1972)

Rohart, Wlodarczak, Colmont, Cazzoli, Dore, Puzzarini, J. Mol. Spec. 251, 282 (2008)

Ref. J.-M. Hartmann, C. Boulet, D.

Robert, Collisional Effects on

Molecular Spectra (2011).



Broadening coefficients of  CO broadened by CO, air, He  at 296 K
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Temperature dependences of   

air-broadening coefficients
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Speed dependence parameters for CO-CO and CO-air mixtures 

obtained using the speed-dependent Voigt profile.

CO-CO

CO-air 



Dicke Narrowing

If the mean free path of the molecules becomes equal to, or less than to the wavelength of the

incident radiation λ, the resulting motion of the molecules becomes Brownian in nature and the

gas diffusion becomes relevant.
 

   222

0

21

PDkPP

PDkP

ooo

oo
DP





















Lineshapes that account for the effect:

(1) Galatry profile incorporates the

Brownian movement model and

assumes only small changes in

the radiators velocity during

collisions (soft collisions).

(2) Nelkin-Ghatak profile and the

Rautian-Sobelman model. For this

line shapes each collision erases

any information about the

radiators velocity. This randomizes

the velocities of the radiators i,.e.

we have hard collisions.



Close-coupled theoretical calculations of  broadening, 

shift, narrowing coefficients applied to the 12C16O-He system 
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• The 3-D potential energy surface (PES) used was proposed by Heijmen et al. J.

Chem. Phys. (1997).

• Most of the close-coupling pressure-broadening and shift cross-sections as a

function of the relative collisional energies were the same as in Luo et al. J. Chem.

Phys. 115 (2001).

• Additional calculations were devoted to purely rotational R lines to predict the odd

component of the ro-vibrational shifts.

• Assuming that the even component of the shifts has a purely vibrational origin

resulting from the isotropic parts of the PES and is therefore J-independent, we are

able to retrieve the shift coefficients in the fundamental (at least at room T).

• Moreover, since the half width at half maximum is nearly vibrationally independent,

we thus also present some results of our calculations performed in the vibrational

ground state to complete our data analysis.



Experimental 

and 

theoretical 

(CC) 

broadening 

coefficients 

at different 

temperatures 

for CO-He

143 K

79 K

231 K

183 K

296 K

CO-He
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Experimental He-shift coefficients and the close coupled (CC) theoretical

He-shifts at different temperatures.

143 K

79 K

231 K

183 K
296 K

CO-He



Theoretical calculations of  diffusion constants for the CO-CO system
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• To estimate the mass diffusion of CO , the molecule was described from a three

electrostatic sites model [A. Martín-Calvo et al., J. Phys. Chem. C 116 (2012)].

• Intermolecular interactions were described by combining electrostatic and van der

Waals interactions.

• Molecular dynamics (MD) simulations were carried out from DLPOLY software.

• In the canonical ensemble, the temperature was kept constant by means of Nose-

Hoover algorithm such that the relaxation time of the thermostat was 0.5 fs.

• The integration of motion equations was performed by using the velocity Verlet

algorithm [M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford

University Press, United states (1987)].

Calculations performed by Dr. Aziz Ghoufi, Univ. Rennes, France



The theoretical narrowing parameters calculated using the diffusion constants 

presented here are currently used in our line parameter retrievals using the 

Rautian and speed-dependent Rautian models.  Results for CO-CO are 

presented here.
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Broadening 
coefficients Pressure shift coefficients



Theoretical classical calculations of broadening coefficients 

of CO absorption lines 
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The calculations utilize simple vibrationally independent intermolecular
interaction potential (Tipping-Herman + electrostatic). Both molecules are
treated as rigid rotors. The dependences of CO half-width coefficients on
rotational quantum number J, for J ≤ 24 are computed and compared with
measured data at room temperature.

Molecule r(Å) B(cm-1) (D) Q (DÅ)
12C16O 1.1309 1.9225 0.11 -2.0

Molecular parameters for CO and H2

Interaction  (K)  (Å)

CO-CO 110

91.7

3.59

3.69

Lennard – Jones interaction parameters,  , 



Better agreement is observed for CO-CO

Theoretical classical calculations of broadening coefficients of CO 

absorption lines obtained using 3 sets of potential parameters 



2017-05-28

30

Line Mixing Effects

Absorption 
Coefficient

At elevated pressures molecular collisions induce transfers of 
populations between the levels of the two absorption lines that 
lead to transfers of intensity between the lines.

Ref. Ha Tran, Université Paris-Est Créteil, France,

private communication



To find the relaxation matrix we use a

nonlinear Marquardt algorithm to

optimally fit the parameters a, b and c

in the state to state transfer equation.

The best fit is found by optimizing the

diagonal elements of the relaxation

matrix to be equal to the

experimentally determined

broadening coefficients.
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Energy Corrected Sudden (ECS) Approximation

• The elements of the relaxation matrix are calculated from the following function.
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length, mean relative velocity in CO-Air collisions, rotational constant respectively.

This is a dynamically based scaling law that takes into account the finite durations of 

collisions through the addition of an adiabaticity factor.
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Measured, calculated and previously published CO-He collisional line mixing

coefficients (in cm-1 atm-1 at 296 K) for transitions in the 10 band of CO.

34

[F. Thibault et al., J. 
Chem. Phys. (1992)]



Conclusions
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• We have studied CO-CO, CO-air and CO-He spectra using a unconstrained multispectrum approach.

• The self- and foreign-broadened line parameters have been retrieved using the Voigt, speed dependent

Voigt, Rautian, and Rautian with speed-dependence line shape models. Temperature dependences of

pressure induced air-broadening and shift coefficients at different temperature were retrieved.

• The best agreement was found for the speed dependent models when line mixing is accounted for.

• We have used theoretical calculations using a potential energy surface to compute the He-narrowing

parameters at different temperatures, the He-broadening and He-induced pressure shift coefficients and

compare them with our experimentally determined parameters and with previously published results.

• Our retrieved He-broadening coefficients were found to agree very well with the corresponding close

coupled calculated values at different temperatures.

• We present the first results of calculations of self-broadened width coefficients of CO using classical

impact theory. We have used a simple interaction PES, with good results for half-widths of the molecular

system.

• The diffusion constants for CO-CO and CO-He mixtures were determined using molecular dynamics

calculations.

• The weak line mixing coefficients have been compared with results of semi-empirical calculations using

the Exponential Power Gap law, the Energy Corrected Sudden approximation, and also with published

results obtained from quantum dynamical calculations and were found to be in satisfactory agreement.
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Future directions for research

➢Conduct retrievals of line parameters using the Hartmann-Tra model 

recommended by IUPAC using the results of this study for parameters were 

there were no prior experimental or theoretical data

➢ Further investigate the behavior of line parameters at cryogenic 

temperatures

➢Record new spectra for pure CO to enable the analysis of a wider range of 

lines.
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“Man must rise above the atmosphere and beyond to 
fully understand the world in which he lives”, Socrates

Thank you!
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