Physics advanced laboratory designed for engaged learning experiences

Etienne Rollin Penka Matanska

Congress 2017 - Kingston

Canada's Capital University

Motivations for this talk

- We wanted to evaluate our <u>advanced</u> laboratory experiments and review them based on:
 - Their alignment with different recommendations (Department, AAPT, etc...)
 - Employers or supervisors expectations
 - The level of engagement to motivate students
- Share and generate discussions about new experiments and potential topics that would be missing from our curriculum.

Difficulties to create a complete advanced lab curriculum

- Physics includes many subfields.
- Jobs with a physics degree are diverse.
- Students skills are developed at different levels.
- Labs are only a small fraction of a full degree.
- A new undergraduate astrophysics stream is offered this fall.

Lab courses offered (3rd and 4th years)

PHYS 3007

Third Year Physics Laboratory: Selected Experiments and Seminars

Students complete a small number of experiments selected from modern optics, holography, atomic physics, nuclear spectroscopy, radiation, etc. An exercise on literature searches and student seminars on experimental and numerical methods are included.

PHYS 3606 and PHYS 3608

Modern Physics II (Modern Applied Physics)

Elements of condensed matter physics, semiconductors, superconductivity. Elements of nuclear physics, fission, fusion, power generation. Introduction to particle physics. Ionizing radiation: production, interactions, detection. Medical physics: radiation biophysics, cancer therapy, imaging.

PHYS 4007 and PHYS 4008

Fourth Year Physics Laboratory: Selected Experiments and Seminars

Students complete a small number of experiments selected from modern optics, holography, atomic physics, nuclear spectroscopy, radiation, etc. An exercise on literature searches and student seminars on experimental and numerical methods are included.

All the experiments offered in 3rd and 4th year labs

Atomic/Nuclear/Particle	Optics	E&M
Alpha/Beta/Gamma Spectroscopy	Laser Doppler Velocimetry	Hall Effect
X-Ray Fluorescence	Mach-Zehnder Interferometer	Haynes-Shockley Experiment
X-Ray Diffraction	Holography	Band Gap of Semiconductors
Electron and Proton spin Resonance	Sonoluminescence	Superconductivity
Muon Life Time	Zeeman Effect	Lock-in Amplifier
Earth field NMR	Optical Pumping	
Pulsed NMR	Saturated Absorption Spectroscopy	Variable Stars
	Optical Tweezers	Vacuum Techniques

Others

New experiments or modified recently for a more engaging experience, oriented for modern skill building.

Advanced lab topics word cloud Does not include first and second year labs

> Electromagnetism Nuclear Physics Thermodynamics Particle Physics Math and Data Analysis Detectors and Electronics Programming Astrophysics Optics Atomic Physics Solid State Physics

Recommendations/Conclusions

- No need for a major reconstruction of our curriculum.
- New astrophysics experiments will be developped over the next 5 years.
- Experiments can me enhanced to make them more engaging and develop more skills with small changes. For example:
 - Letting students design their experiment, calibrate instruments, connecting cables, aligning optical elements.
 - Asking student to program a simulation or an analysis package of the experiment.
 - Removing the theory from the lab manual and instead giving a list of recommended articles.
 - ...
- To develop extracurricular skills, we are working on a model to help students wanting to develop extracurricular skills (programming, electronics, job searching, etc...)

Open Discussion (if time permits)

- Have you done a similar review at your University?
- Have we missed something important?
- Any new experiments you want to share with us?
- How specialized/versatile should undergrad students be?