Seeing the strongly-correlated zero-bias anomaly in double quantum dot measurements

Rachel Wortis wortis@trentu.ca

Joshua Folk Silvia Luescher

Connecting

bulk strongly-correlated materials

double quantum dots

Transition metal oxides

What does disorder do to strongly correlated systems? What do interactions do to disordered systems?

Zero-bias anomalies

Altshuler-Aronov weak interactions & disorder

Butko, et al, PRL 2000

Efros-Shklovskii atomic limit, 1/r Coulomb

Zero-bias anomalies

Altshuler-Aronov weak interactions & disorder

Butko, et al, PRL 2000

Efros-Shklovskii atomic limit, 1/r Coulomb

Zero-bias anomalies

Altshuler-Aronov weak interactions & disorder

Butko, et al, PRL 2000

Efros-Shklovskii atomic limit, 1/r Coulomb

Sarma, *et al*, PRL 1998

stronglycorrelated theory

> Chiesa, et al, PRL 2008

strongly correlated systems: kinetic-energy-driven zero bias anomaly

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{i, \sigma} \epsilon_{i} n_{i\sigma}$$

independent of
interaction strength
disorder strength
chemical potential
width linear in t

ZBA

Chiesa, et al, PRL 2008

strongly correlated systems: kinetic-energy-driven zero bias anomaly

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{i, \sigma} \epsilon_{i} n_{i\sigma}$$

independent of
interaction strength
disorder strength
chemical potential
width linear in t

ZBA

Chiesa, et al, PRL 2008

Wortis & Atkinson, PRB 2010

ensemble of two-site systems

-> ZBA with the same parameter dependence as the bulk crystal

parallel-coupled double quantum dots

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{i, \sigma} \epsilon_{i} n_{i\sigma}$$

Wang, et al, APL 2011

parallel-coupled double quantum dots

lower drain barrier -> focus on transitions which add one particle to the ground state

Wang, et al, APL 2011

stability diagrams

Chan, et al, APL 2002

including nearest-neighbor interactions

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma}$$

$$+U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$+ \sum_{i, \sigma} \epsilon_{i} n_{i\sigma}$$

$$+V \sum_{\langle ij \rangle} n_{i} n_{j}$$

seeing the zero bias anomaly in stability diagrams

seeing the zero bias anomaly in stability diagrams

shows suppression of density of states at zero bias BUT does not distinguish between different mechanisms

seeing the energy dependence of the zero bias anomaly

†=0

seeing the energy dependence of the zero bias anomaly

t=0.6

seeing the energy dependence of the zero bias anomaly

U=8

seeing the energy dependence of the zero bias anomaly

U=8 zero-bias anomaly strong V_{bias} dependence

Summary

Connecting

and

Using DQDs to see the physics of the zero-bias anomaly in bulk disordered strongly-correlated materials

- simple: less ensemble-averaged current at zero bias when the tunnel barrier is lowered
- better: use differential conductance as a function of V_{bias} to distinguish the kinetic-energy-driven effect, a unique signature of strong correlations