

SELF- AND AIR-BROADENED LINE PARAMETERS OF METHANE IN THE 4100-4300 WAVENUMBER RANGE

2017 CAP Congress Md Arifuzzaman arifuzzaman@uleth.ca Department of Physics and Astronomy University of Lethbridge May 29 - June 2, 2017

<u>Authors</u>

Md Arifuzzaman, arifuzzaman@uleth.ca

- Adriana Predoi-Cross, <u>adriana.predoicross@gmail.com</u>
- Vladimir Tyuterev, <u>vladimir.tyuterev@univ-reims.fr</u>
- Andrei V Nikitin, avn@iao.ru
- Malathy Devi, <u>malathy.d.venkataraman@nasa.gov</u>
- Keeyoon Sung, <u>keeyoon.sung@jpl.nasa.gov</u>
- Mary Ann H. Smith, <u>mary.ann.h.smith@nasa.gov</u>

Motivation

Methane:

- Atmospheric trace gas [1,800 ppb]
- Second most important anthropogenic green house gas
- Global warming potential ~ 86 times that of CO₂
- Present also in outer planets

HITRAN molecule #6 Geometry: Tetrahedral T_d symmetry

28/05/2017 Source: *Wikipedia-Atmosphere of earth*

Methane Octad Band

A. Predoi-Cross, M. Brawley-Tremblay, Linda R. Brown, V. Malathy Devi, D. Chris Benner, *Multispectrum analysis of* ¹²CH₄ from 4100 to 4635 cm⁻¹ : Air-broadening coefficients (Widths and shifts), J. Mol. Spectrosc. 236 (2006) 201–215.

Previous Studies on Methane

- Room temperature;
- Only one speed-dependent analysis
- Spectroscopic line parameters of ¹²CH₄ for atmospheric composition retrievals in the 4300-4500 cm⁻¹ region (in the 4300-4500 cm⁻¹ region) R. Hashemi et al. J. Quant. Spectrosc. Radiat. Transfer 186 (2017) 106–117.
- 2. Self- and air-broadened line shape parameters in the v_2+v_3 band of ${}^{12}CH_4$: 4500–4630 cm⁻¹ (in the 4500–4630 cm⁻¹ region) V.M. Devi *et al.* J. Quant. Spectrosc. Radiat. Transfer 152 (2015) 149-165.
- Line mixing effects in the v₂ + v₃ band of methane (<u>Room-temperature study</u>) A. Predoi-Cross *et al.* J. Mol. Spectrosc. 246 (2007) 65-76.
- 4. Multispectrum analysis of ${}^{12}CH_4$ from 4100 to 4635 cm⁻¹: II. Air-broadening coefficients (<u>Air-broadening, room-temperature study</u>) A. Predoi-Cross *et al.* J. Mol. Spectrosc. 236 (2006) 201-215.
- Multispectrum analysis of ¹²CH₄ from 4100 to 4635 cm⁻¹: I. self-broadening coefficients (widths and shifts), (Self-broadening, room-temperature study) A. Predoi-Cross et al. J. Mol. Spectrosc 232 (2005) 231-246.
- 6. *Measurements of Air-broadening and pressure-shifting of methane lines in the 2.3 μm region* (Room temperature study) V. Malathy Devi *et al.* J. Mol. Spectrosc 157 (1993) 95-111.
- Temperature dependence of Lorentz air-broadening and pressure shift coefficients of CH₄ lines in the 2.3 μm spectral region V. Malathy Devi et al. J. Quant Spectrosc Radiat. Transfer 51 (1994) 439-465. 5/28/2017

Objectives

Determination of line parameters of $(v_1 + v_4)$ **band :**

- CH₄-CH₄ and CH₄-air <u>half width and pressure-shift</u> coefficients along with their temperature dependences
- Retrievals of **speed-dependence** parameters
- Measurements of <u>line-mixing coefficients</u> for 49 strongest pairs of transitions using the off-diagonal relaxation matrix element formalism

Comparison of:

- Observed line position and intensities with calculated values and with GEISA 2015, HITRAN 2012 database results
- Broadening and shift coefficients with available database results
- Line mixing coefficients with previous published results

Applications of this type of research: Earth Radiation Budget, Radiative Forcing and Remote Sensing

Theoretical Background

$$A = \log_{10} \frac{I_o}{I} = \varepsilon lc$$

A = absorbance of sampleC = concentration (mol/L) $\varepsilon = \text{molar absorptivity } (\text{L mol}^{-1} \text{ cm}^{-1})$

$$I(v) = I_0(v)e^{-K(v)L}$$

Spectral absorption coefficient, $K(v) = p\chi_{abs}S(T)F(v-v_0)$

F(v) = line-shape functionp = pressure χ_{abc} = mole fraction S(T) = line strength

Line-shape profiles:

- Doppler (dominant at **low p**)
- Lorentz (dominant at **high p**)
- (convolution of both) Voigt
- We assumed Speed-Dependent Voigt Profile (SDVP)

Equations

• A spectral line is characterized by: Lorentz <u>half width at half maximum</u>

$$b_L(p,T) = p \left[b_L^0(air)(p_0,T_0)(1-\chi) \left[\frac{T_0}{T}\right]^{n_1} + b_L^0(self)(p_0,T_0)\chi \left[\frac{T_0}{T}\right]^{n_2} \right]$$

<u>Pressure-shift</u> of the line from its center

$$v = v_0 + p \left[\delta^0(air)(1-\chi) + \delta^0(self)\chi \right] \qquad \delta^0(T) = \delta^0(T_0) + \delta' \left[T - T_0\right]$$

 b_L^0 = pressure broadening coefficient (cm⁻¹ atm⁻¹) of the spectral line δ^0 = pressure-induced shift coefficient (cm⁻¹ atm⁻¹)

 $b_{L}(p, T) =$ Lorentz halfwidth (cm⁻¹) at p and T

 χ = ratio of partial pressure of CH₄ to total sample pressure

 n_1 and n_2 = T dependence exponents for air- and self-broadened widths

 δ' = Temperature dependence of the pressure-induced shift coefficient

Rotation-Vibration Transition

v = 0, vibrational ground state ⁹ v = 1, 1st vibrational excited state

28/05/2017

Source: Wikipedia

Experimental Conditions

Gas sample	CH ₄ Volume mixing ratio	Total Pressure (Torr)	Temp. (K)
¹² CH ₄	1.0	385.0	298.4
¹² CH ₄	1.0	22.20, 121.51	250.0
¹² CH ₄	1.0	9.90, 43.95, 169.00	200.0
¹² CH ₄	1.0	4.52	148.4
¹² CH ₄	1.0	149.06	148.5
¹² CH ₄ +Air	0.055	112.60	250.0
¹² CH ₄ +Air	0.057	254.58	250.0
¹² CH ₄ +Air	0.073	148.49	200.0
¹² CH ₄ +Air	0.074	299.95	200.0
¹² CH ₄ +Air	0.0965	95.07	148.4
¹² CH ₄ +Air	0.0413	225.37	148.4

Absorption path length = 20.38 cm

Experimental Setup

- Absorption spectra recorded with the **Bruker IFS 125HR FTS** (Fourier Transform Spectrometer) located at JPL, California.
- Light Source: Globar
- **Absorption path length:** 20.38 cm **Resolution:** (0.005 cm⁻¹)
- **Band pass:** 3750 to 5200 cm⁻¹
- **SNR:** 2000 to 2500
- **Temperature:** 298-148 K

Detector: InSb

Scanning time: 5-7 h / each

Aperture Diameter: 1 mm

Total sample pressure: 4.5-385 Torr

99.95% Enriched ¹²C methane samples

Single pass cold cell assembly,

5/28/2017

Helium-cooled refrigerator system

Results

spectra that

14 experimental

Bottom:

were fitted simultaneously

D.C. Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, D. Atkins, A multispectrum nonlinear least-squares fitting technique. J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705-721

12

Letchworth KL, Benner DC. *Rapid and accurate calculation of the Voigt function*. J. Quant. 5/28/2017 Spectrosc. Radiat. Transfer 107 (2007) 173 – 192.

Lorentz Half Width Coefficients

upper state J for R branch transition lower state J for P and Q transition Ш m

Temperature Dependence of Broadening Coefficients

Air- and Self-Shift Pressure Induced Coefficients

Temperature Dependence of Air- and Self- Shift Coefficients

Speed Dependence Parameter

Speed dependence coefficient

Comparison of Line Mixing Coefficients

Off-diagonal relaxation matrix

Comparison of Line Mixing Coefficients

Off-diagonal relaxation matrix

Comparison of Line Position

Comparison of Percentage Intensity Difference

Conclusion

- This work contributes to a better understanding of T-dependence of selfand air-broadening and pressure-shift of (**P**, **Q**, **R**) transitions in methane (4100-4300 cm⁻¹).
- We retrieved speed-dependent line parameters ~ (0.0 to 0.2). The speed dependence parameters appeared to be independent of vibrational bands.
- Also retrieved are the line mixing coefficients given as off-diagonal relaxation matrix elements ~ (0.00 to 0.07 cm⁻¹atm⁻¹ at 296 K) with a slightly larger values in air-broadening case.
- The future plan is to study CH_4 broadened by H_2 for applications such as the remote sensing of outer planets like Jupiter, Saturn, etc.

Acknowledgements

Thank you for your kind attention