Investigating the Potential Verwey Transition in Pb₃Rh₇O₁₅ with Synchrotron X-rays

<u>Patrick Clancy</u>^{1*}, Melissa Van Bussel¹, Lindsey Munro¹, Cassandra Thompson¹, Jiaqiang Yan², Jim Britten³, and Jacob Ruff⁴
¹Trent University, ²Oak Ridge National Laboratory, ³McMaster University, ⁴Cornell High Energy Synchrotron Source

May 30, 2017

CAP Congress, Queen's University, Kingston ON

Introduction to $Pb_3Rh_7O_{15}$

□ Mixed valence: $Pb_3[Rh^{3+}]_4[Rh^{4+}]_3O_{15}$

□ Hexagonal crystal structure ($P6_3/mcm$)

Simplified Structure (Rh Only):

Introduction to $Pb_3Rh_7O_{15}$

- $\square \text{ Mixed valence: Pb}_3[\text{Rh}^{3+}]_4[\text{Rh}^{4+}]_3O_{15}$
- □ Hexagonal crystal structure ($P6_3/mcm$)
- $\hfill\square$ Evidence of phase transition at Tc \sim 180 K

H. Mizoguchi et al, Chem. Mater. (2009)

The Verwey Transition

Metal-to-insulator transition driven by the development of charge order
First observed in magnetite (Fe₃O₄): Fe²⁺/Fe³⁺ order below T_v ~ 125 K

The Verwey Transition

Determining low temperature structure of magnetite = 73 year problem!

M. S. Senn et al, Nature (2012)

 \Box Charge order \rightarrow Jahn Teller distortion \rightarrow 3 site "Trimeron" ordering

Potential charge order in Pb₃Rh₇O₁₅?

Rh³⁺/Rh⁴⁺ charge order patterns predicted by lattice energy calculations [Muller-Buschbaum (2007)] and bond valence sum analysis [Mizoguchi et al (2009)]

H. Mizoguchi et al, Chem. Mater. (2009)

Experimental Details

Can we find evidence of Rh^{3+}/Rh^{4+} charge order?

- Single crystal samples of Pb₃Rh₇O₁₅ (flux growth methods, PbO flux)
- □ Single crystal x-ray diffraction (McMaster)
- Synchrotron x-ray scattering (Cornell)
- Beamline A2 at CHESS
- High energy diffraction
- Resonant scattering at Rh K-edge (E_i = 23.22 keV, 1s → 5p)

A Complex Crystal Structure (Pt. 1)

 Low temperature crystal structure previously measured [Mizoguchi et al (2009)], but never solved...

Preliminary refinements point to trigonal structure with merohedral twinning

A Complex Crystal Structure (Pt. 2)

 High flux synchrotron measurements reveal structurally forbidden peaks, present above and below Tc

 \Box No systematic absences \rightarrow screw-axis and glide-plane symmetries broken

Structural Phase Transition at Tc

 Evidence of continuous structural phase transition at Tc ~ 174.6 ± 1.0 K

Resonance Behaviour at Rh K-edge

- □ Tune incident energy to Rh K-edge at 23.22 keV → No new superlattice peaks appear
- Structural peaks display rich energy dependence, theoretical modelling underway

Summary and Conclusions

- \square Pb₃Rh₇O₁₅: first 4d candidate for Verwey transition
- Metal-to-insulator transition at Tc ~180 K, potentially driven by the development of Rh³⁺/Rh⁴⁺ charge order
- Crystal structure of Pb₃Rh₇O₁₅ more complex than previously assumed (even at room T)
- Twinned trigonal crystal structure develops at low T
- □ Evidence of continuous structural phase transition at Tc ~180 K
- If present, charge order appears to be commensurate with lattice (no new superlattice peaks below Tc)

Acknowledgements

- Undergraduate student research experience project:
- Cassandra Thompson
- Lindsey Munro
- Melissa Van Bussel
- Primary funding provided by Trent VP Research Strategic Initiatives Fund

P6₃/mcm Structural Model

*P*6₃/*mcm*

$P 6_3/m 2/c 2/m$

6/*mmm*

	Symmetry Operators	
	<i>x</i> , <i>y</i> , <i>z</i>	1
2	$\overline{y}, x - y, z$	3

10 y, x, z 11 $x - y, \overline{y}, z$ 12 $\overline{x}, \overline{x} + y, z$ 13 $\overline{x}, \overline{y}, \overline{z}$ 14 y, \overline{x} + y, \overline{z}

2	$\overline{y}, x - y, z$	3+	(0, 0, z)
3	$\overline{x} + y, \overline{x}, z$	3-	(0, 0, z)
4	$\overline{x}, \overline{y}, \frac{1}{2} + z$	21	$(0, 0, z) [0, 0, \frac{1}{2}]$
5	$x - y, x, \frac{1}{2} + z$	6^+_3	$(0, 0, z) [0, 0, \frac{1}{2}]$
6	$y, \overline{x} + y, \frac{1}{2} + z$	6_3^-	$(0, 0, z) [0, 0, \frac{1}{2}]$
7	$\overline{y}, \overline{x}, \frac{1}{2} + z$	С	$(x, \bar{x}, z) \ [0, 0, \frac{1}{2}]$
8	$\overline{x} + y, y, \frac{1}{2} + z$	С	$(x, 2x, z) [0, 0, \frac{1}{2}]$
9	$x, x - y, \frac{1}{2} + z$	С	$(2x, x, z) [0, 0, \frac{1}{2}]$
10	<i>y</i> , <i>x</i> , <i>z</i>	т	(x, x, z)
11	$x - y, \overline{y}, z$	т	(x, 0, z)
12	$\overline{x}, \overline{x} + y, z$	т	(0, y, z)
13	$\overline{x}, \overline{y}, \overline{z}$	$\overline{1}$	(0, 0, 0)
14	$y, \overline{x} + y, \overline{z}$	$\overline{3}^+$	(0, 0, z; 0, 0, 0)

