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Synchrotron Radiation
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When a charged particle (electron, positron, ion, ...) is accelerated
it emits light.

Synchrotron radiation is light produced when an particle is accelerated
along a curved trajectory at relativistic speeds (close to the speed of light)




Synchrotron Radiation
How is it produced!?
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Why Synchrotron Radiation!?

Synchrotron radiation has a .
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High brightness: synchrotron radiatior
is extremely intense (hundreds of
thousands of times higher than
conventional X-ray tubes) and highly
collimated (similar to a laser).
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Bemline: Resonant Soft x-ray scattering

Undulator Monochromator

An adjustable
periodic array of
magnets that
controls the
photon energy and
polarization

Define and vary the photon energy

+ mirrors to focus the light
onto an endstation

R



Resonant Soft x-ray scattering at the Canadian
Light Source

Resonant Scattering endstation




Resonant Soft X-ray Scattering at the Canadian
Light Source

closed-cycle
cryostat

4 circle diffractometer ) i i heaphie'd George Sawatzky (UBC)
) ) s QG | David Hawthorn (Waterloo)
(9 in-vacuum motions) G IR IR Feizhou He (CLS)

. sample recepticle

Luc Venema (Groningen)
Harold Davis (UBC)

eultra-high vacuum
Ronny Sutarto (UBC)

(P~ 2 x 10-'9 mBar)
*Photodiode, channeltron,
channelplate and polarization
sensitive detector

*cooling to <20 K

*Full polarization control
of incident light (EPU)

funded by Canada Foundation for Innovation, British Columbia Knowledge :
Development Fund and Western Economic Diversification Hawthorn et al. Rev. Sci. Instrum. 201 |



Resonant X-ray Diffraction and Reflectometry

X-ray spectroscopy

X-ray
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Resonant Elastic X-ray Scattering

unoccupied
states

occupied
states

core hole
state (1s, 2p, ...)

Near an absorption edge, the atomic
scattering form factor,f (how strongly an
x-ray scatters from an element), becomes
strongly dependent on photon energy
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Nematicity in stripe-ordered cuprates probed
via resonant x-ray scattering

A.].Achkar, M. Zwiebler, Christopher McMahon, F. He,
R. Sutarto, Isaiah Djianto, Zhihao Hao, Michel |. P. Gingras,
M. Hucker, G. D. Gu,A. Revcolevschi, H. Zhang,Y.-]. Kim,

J. Geck, D. G. Hawthorn

Science 351,576 (2016).



Cuprate High-Temperature Superconductors

La,  Sr,CuO,

Low energy
physics is
dominated by
the CuO,

planes
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What are the ordered phases of the cuprates?
-superconductivity

-anti-ferromagnetism

-charge density wave order

-spin-density wave order

-nematic order?

-loop current order?

How do different types of order interact?



Density wave order in the cuprates

La, 47sNd; 4Srg [,sCuO, Elastic Neutron scattering  Unidirectional Spin and charge order
(stripes) first observed in the
c — - _ cuprates by neutron scattering
) S (Tranquada et al., Nature 1995)
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Charge Density Wave Order in Cuprate Superconductors

Cu L edge (2p = 3d)
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- electronic structure
Intensity enhanced on resonance




Structure, nematicity and CDW order in

(La,X),CuO,

Neutron scattering
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orthorhombic
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temperature
tetragonal (LTT)




Structure, nematicity and stripes in

(La,X),CuO,
(La,X),Cu0Q, orthorhombic It order LTO to LTT phase
Cu CuO, planes transition measured by x-ray
LTO and neutron scattering
AL [110], .,
La,Ba,Sr,RE ‘V Axe PRL 1989
a.—=b Suzuki Physica C 1989
O(1) LTT S Tranquada 1995
4& [010],,, Zhao PRB 2007
0(2) \"" [100], ., Kim PRB 2008
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Low temperature tetragonal (LT T) structure

Tilt direction of octahedra alternates
between neighboring planes
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Unidirectional CDWV order: stripes

La-based cuprates
(b)

CO SO

LTT tilts and stripe order

LTT distortion
stabilizes stripes
that alternate in

direction between
neighboring CuO,
planes




(001) Bragg reflection

Cu A Conventional x-ray diffraction
(001) Bragg peak is forbidden
» Scattering from neighbouring
La,Ba,Sr,RE . :
d001 planes destructively interferes
O(1)
O(2) Resonant x-ray diffraction
[0y v (001) Bragg peak is allowed

Fink et al. PRB 2011
Wilkins PRB 2011




Low temperature tetragonal (LT T) structure

Cu 3d states
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The octahedral tilting breaks the C, symmetry of the
orbitals in each plane

The (001) peak at the Cu L resonance measur
electronic nematicit



(0 0 I) peak at different photon energies

Measure (0 0 |) at different
photon energies

—> Provides sensitivity to
different atoms in the unit
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Relation to CDWY order

Peak amplitude La1,65Eu0,2Sro_15 CUO4 Achkar Science 2016
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Distinct order parameters

Loyl TS ETOY g e e I Achkar Science 2016
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Distinct order parameters:

Electronic nematicity of the CuO, planes is coupled to, but distinct
from the structural distortion of the (La,X),0O, spacer layer



Probing Emergent Phenomena at Oxide
Interfaces using Resonant X-Ray Reflectometry

Thin film

interface

substrate



Emergent Phenomena at Oxide Interfaces

Control the proximity of different
symmetry breaking phenomena to create
new phases of matter

enhance desired properties
Ex: increase the superconducting
transition temperature by changing -
dimensionality, applying epitaxial Orbital
strain, or modifying the orbital
symmetry




Key Challenge in Studying Emergent
Phenomena at Oxide Interfaces

It is experimentally difficult to examine spin, charge, orbital
reconstruction of buried interfaces. Many conventional
experimental tools are impractical, lack sensitivity or are

destructive.




Example: Mn, ,;Ga, 93As film on GaAs substrate

45nm1

Mn 7Gag 93AS

Mng 7Gay 93As forms a
magnetic semiconductor
that is potentially useful
for new generations
electronics, spintronics,
that make use of magnetic
degrees of freedom




Example: Mn, ,;Ga, 93As film on GaAs substrate

45 nm 1 Mng ;Gag 93AS

Reflectivity

10°
10
10°

10°

10!

10°

Interference fringes due to the 45 nm
thickness of the film

45 nm Gag g3Mng o,As -
film on GaAs substrate

— on Mn L resonance -
— off Mn L resonance




Example: Mn, ,;Ga, 93As film on GaAs substrate

45 nm 1 Mng 07Gagg3As M T

Reflectivity
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45 nm Gag 93Mng o7 As i

film on GaAs substrate
Mn L; edge (639.5 eV) .

— right circularily polarized i
— left circularily polarized 4

T>T, x10




Chemical and electronic structure depth profiling

Example: Electronic reconstruction on the surface of LaCoQO; film on an NdGaO; substrate
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Chemical and electronic structure depth profiling

Example: Atomic layer resolved stoichiometry AND magnetic structure
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Conclusions

Resonant x-ray diffraction and reflectometry provide a
unique, element and orbital specific probe of spin, charge
and orbital symmetry breaking in crystals and thin films
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