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As shown in most solid state physics books,
crystals are made of periodic structures in
space.

Then all position vectors of particles in one
cell, and the three period vectors are the full
degrees of freedom of the whole system.

The period vectors, | call here, are the cell
edge vectors, and also known as the basic
vectors or primitive translation vectors.



What about the period vectors?

In classical physics, the dynamics of
particles is described by Newton's second
law.



The period vectors can be determined by
minimizing (Gibbs) free energy or enthalpy
for crystals under constant external
pressure.

What about the general situation with
constant external stress?
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Molecular dynamics (MD) simulations have
been widely used with the periodic
boundary condition applied, then the
whole system becomes a crystal.

Then we face the same basic physics
problem to determine the period vectors

theoretically in MD.



A great amount of effort has been devoted to
derive the dynamics of the period vectors.
Since the Lagrangian/Hamiltonian Dynamics
is used, dynamical equations of the particles
are re-generated as well.



Three typical problems in the effort

The re-generated dynamical equations of particles usually
deviated from Newton's second law to some extent.

The generated dynamical equations of the period vectors
under external stress are not in a form where the period
vectors are driven by the imbalance of the internal and
external stresses. Then when the system reaches an

equilibrium state, the internal and external stresses may not
balance each other.

The generated internal stress may not contain the kinetic-
energy term or only contain fractional coordinate velocities.

Without
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Parrinello and Rahman theory
(constant external pressure)

L=3%3m,3; st,-?j@l@(yi, ) +3WTr(h'h) =pe. (1)
Sy =m,! x(r;;)(8;-8;) -G~ 1GS,, (2)
=i
=W L1 = pox)a. 3)
Q7 = E m ViV, "‘EJZ}% xr; )&, -T,)T,-T;), (4)
Wlth h be the matrix fnrmed by {a, b, }
ry =_£i5+m5+€{5 =h§;, &ims, 84)

x(r) to denote —~d¢/rdr, the vector ¥, being E'é}.
Phys. Rev. Lett. 45, 1196 (1980)

12


https://doi.org/10.1103/PhysRevLett.45.1196

In 1983, Nosé and Klein pointed out

The result is the usual Newton's second law equation with a correction term
arising from the change in shape of the MD cell.

m.igi = h-l fi —_ m,-GFl Géi- (2.5)

in the paper
MoLecuLAR PHYsIcS, 1983, VoL. 50, No. 5, 1055-1076

This implies that the generated dynamical
equations for particles in PR theory are not
consistent with Newton’s second law.


http://dx.doi.org/10.1080/00268978300102851

PR theory (constant external stress)

The generated dynamical equation for the
periods under constant external stress s

Wh = (r — plo — hX. (2.25)

> =h; (S —ph; 12, (2.24)

in the paper J. Appl. Phys. 52, 7182 (1981).
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http://aip.scitation.org/doi/10.1063/1.328693

We recently derived

Can. J. Phys. 93: 974-978 (2015), dx.doi.org/10.1139/cjp-2014-0518
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by following Newtonian Dynamics only, where Newton’s
laws are strictly reserved and used repeatedly.
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http://www.nrcresearchpress.com/doi/10.1139/cjp-2014-0518#.WRM_8YWcG3s

As a result,

Newton’s second law on the particles

is always kept as original (then only work for periods);

our dynamical equations are in the form where the
periods are driven by the imbalance between internal
and external stresses;

our internal stress has both a full kinetic-energy term
and a full interaction term.
Typicals



Since this work deals with pair-potential only

Can. J. Phys. 93: 974-978 (2015), dx.doi.org/10.1139/cjp-2014-0518
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Let us do it again with many-body interactions.
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Three major steps

Newton's second law is applied on halves of the
crystal to get instantaneous dynamical equations of
the period vectors.

Statistics of the above dynamical equations over
indistinguishable translated states is carried out.

Forces associated with momentum transportation
and statistics over particles’ moving directions are
further implemented in the dynamical equations.



Some preparation first



In this work, the whole system is modeled

as a limited macroscopic bulk, composed of an
unlimited number of repeated microscopic cells
in three dimensions, with surface effect ignored.
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As usual, the cell in the center

is called MD cell. Particles in it called MD particles
with position vectors r;, , i=1.2.---.n .
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For each cell, the three edge vectors

s | b C (forming a right-handed triad)
are the period vectors of the system.
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Some notation

By using the periods 4, b, c any cell can

be represented with T = T,a + Ty,b + T.c,
where 1,, 1y, 1. are integers.

Forthe MDcell T =0.

Cellvolume () = (ax b)-c

Cell surface vectors:
0a=b Xc, opb=cXxa, o.=axb
h=a, b,orc



More notation

External stress Y
with external pressure P as a special case

L T=1p [
where 7 is a unit matrix.



More notation

For identifying a particle in the many-body
interactions across the whole crystal
effectively, let us use a simplified form of
index /. forit, so that its position vector
can be expressed as

r7, = lpaa+ Ippb + I cc+ 15y,
where [k a, kb, and I . are integers,

and 'k is its image particle in the MD cell.
Namely, [, means four integers of

Lias Ikb,s ke, i)



More notation

For any pair of indexes [, and [
(I — Iiva)? + (Ies — T p)? + (Tne — Tnre)? + (i — )2 # 0

is always assumed, as no pair of particles
can share the same physical location.
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More notation

For up to M-body interactions, the m-body

potential is
(m . .
‘1"”( )(r_[l*rlrgflfg?”'?lfm)

then the force on particle I is
(m) /. ,
ffk (Ifltrfﬁr”'flfm)

— —Vr.r;ﬂ'ﬁ‘j(m}(rh y LIgy -‘r*r’m)
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Force properties

Based on the essence of Newton’s third law,

Tri
D fﬁf)(l‘fpl‘fg-. Ify, .11, ) =0
k=1

Further considering the crystal’s periodicity,

i | )

1121
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Force Independence

As different body interactions are independent
on each other, the total potential or forces
should a summation of all of them. For
example,



Stationary coordinate system

Since - . - __
Z m;r; = Z F, =0
i—1

i—=1

the center-of-mass coordinate system of MD
cell will be employed.



The first major step

Instantaneous dynamical equations of
the period vectors.

Statistics of the above dynamical equations over indistinguishable
translated states is carried out.

Forces associated with momentum transportation and statistics over
particle's moving directions are further implemented in the dynamical
equations.
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Now let us first cut the gygtem into two parts
hWh

L ‘/ /s /O

’ IVIDceII “h ceII3h

Py Q

with plane £ P, so that for a given period h,

the right (Ry) part contains T =Taa+1Tpb +1cc

cells of 1u =20, the rest in the left (Ln) part.
m



A detailed illustration

h h —
The red is the MD cell.
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The net external force on Rp

FE.,R:/ T '(].S :T . ({S :T Sh
R-h '_':'rf ' R‘h '.'Sf
S, is the cross section vector in plane Pnl,

PhQh

Lh
(77 T Ra

’ IVIDceII “h c:eII3h




Newton’s Second Law on Fp
Mpr¥pe =Frp+ T -S;

F;_r isthe net forceon R, by Ly

—-

,. |
MD cell h cell 3h

/
m\/ ‘/ / 1 /\‘O-h

Pn Qh



Newton’s Second Law on Fp
ﬂ[Jf%jf:H(_?’ — FL%R“‘ T 'Sh ‘Nh — ‘Shl / ‘{Th‘
: 1
1

\—_AXIRI.R(_' — Fh+ T “Oh Fh - KFL%R
iVh

—-

,. |
MD cell h cell 3h

.r”f /
(T 7 G

P @ :



, 1. —
The left side of Eﬂfﬂl‘ﬂc = Fpt+ T o

! 1JRI'R( = y‘ y\m; (I'@—}—T) \[Ct” Z T

Nh \'h TERy, i=1 N TeERy

where M., =", m; and T = T,a+ Tyb + T.¢

T TL

and Z; mity = Z; Fi=0. s used.
= 1=
m
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, 1
The left side of §—alre = Fut T o
1
\h
where

\[RI rc — @had T (}'h,bb T O cC,

J [C(?_”

Ohh! — 7
| '\"h

> Tw (W =a, b, c).

TeERY
Since in 17, , any 7} is non-negative, and
forany Ti,., , there exists _7,, to cancel
it, then anw=+n is zero.

|

1[313( — fl’h,hh
\h
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Newton’s Second Law on Rp
1

f’_l'h___hh — Fh—l— Y -Op. Fn = EFL—-‘*R
By,  “half cell bar”
Lh Rh

fﬁf /
[T T /G

,. |
MD cell h cell 3h

P @ :



F,, is the net force of blues on red and greens

The red is the MD cell.
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Newton’s Second Law on Rh

. s 1
Il'f—]f'h_._hh — Fh—l_ T Oh. Fn = Ni, Fror

Considering all m-body interactions with
total ¢ particles (m > 1 > 1) in the Ry, part

(I1,nd2ny It n20) (Teg1.nde42, 0y dm n<0) ¢

1 1

(m) __ (m)
Ft:h - .-'1\"?1 1! (?n-—t}! Z Z Zf}u (I‘fl,I‘fg,rIS:...,_I‘;m)
L1¥h CG. . {Il:fﬁ,'-‘:ff} {IT—FI:It—Q;"';Im} 4[5:1
1 1 (I1nd2n, It n=>0) (Itg1,nde42, 0y dm n<0)
_ (m)
~ Npt!(m—t) Z Z Uy, (rn, v, v, Tr,)
SRy {I1,12,---, 1+ } {lt41.dt12, - Im}
1 1 (I1,nd2,ny e n20) (Teg1,nde 42,0y Im, n <0)
_ (m)
 Np (t— D! (m—1t)! Z Z f (Cn T Try T
{I1, 2,1t} {liv1 dexro, I}



Newton’s Second Law on Fp
. NN 1
n‘f_'.l:'h___hh — Fh—l— Y -Op. Ky = EFL—-‘*R

By using crystal’s periodicity, it can be reduced to

—oc n U2,nd3n, Ten>l) (Ieg1,nde42,ns 5 dm,n<l)

FETE) - Z Z Z Z frgm}(r'f-l'- L PPR U PRI rfm]

t— 1) (m —
( L 1=0i3=1 {I2,I3,---,1+} {lty1,0e12,Im}
M m-—1
2 : (m)
Ft h
m=2 t=1
M m-—1 —o0o n {zndan,e - den>l) (Lixr,ndet2.ny - dm n<l)

(m —t)! Z Z Z Z fi(lm)(ril'rfzfrfsf"'-I'Im)

(t—1)!
m=2 t=1 =0 i1=1 {I2,0I3,- It} {Iti1,0t12,Im}



Total cell potential energy

For m-body potential (™) (rr,,rr,,---.rr, ),
supposing s (m = s > 1) particles in the cell,
then s/m of the potential should belong to
the cell
] _ (inside the cell) (outside the cell)
E?Snzg’fls - = l - Z Z 5'9(”1}(1'11131'%'2.-'"trisrrfs—lrrfs—g'-'”?rfm)

m s!(m — s)! L=
i1,02, 5t {Tspa,dap2, - Im}

(m)
Ep?ceif — E :Epcefie

(m i ‘
B ﬁz Z 7""( }(ril.‘rfg'.lfgg"'_.lfmj

+ 11:1 {I‘E:IE:'“:ITH}
PPI

Epﬁceff- — ZE;ET.;M

m=2
43



Take a derivative

0 _(m 1 < m .
{)IIEE() E‘g’ﬂ — ﬁ Z Z ZIkhf}EL }(r'il'-rf‘ztrfg_"'”-_rjrin)

Ci1=1{Iy,Iq, -, I} k=2
— }nl Z Z (Tn_ 1)Im:hf};n}(ri11rfﬁ:rfa_"Hﬁrfﬂl}
i1=1{I2,I3,-
B m (m — 2)! Z Z Im,hf;g::)(rilrrfgfrfzt”'.*rfmJ
11 1{fg Ig
where
I fltrf;'gr -.rfm) _ rr, (rfl.‘rfﬂ'- Trf'm)
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where

Split it based on signs

() m m m
_EE;E cgfi = FH + F( )

m }1}0

(m)
ITI m — ) ! Z Z I'mshffm (ril R CPR A PP

i1=1{I3,I5,

]_ ’.rTL h >

m (Tn — 2)' Z Z Z f(:)(r?;lt. 7, rry, -

=0 i1= 1{[2 I,

m }1{[]

) 1 f (T?l} ( . . r- . . . . .

Cir=1{IyI3, I}

m h{:f

m (m—f})!z Z Z f(m}(ril,rfgﬁrfgg...

1=0 i1=1 {I5,I3,--
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Expand it and more effort

m—2-4+oc n fm h}g(I‘E,haf.?»,hr-'“_'-It"_}_]_,h>OJ(It’+2,hﬂj—:’_3!11:'":I?Tl—l,hgo] (m)
f;

JEEF ) I DD SEED >

t'=0 =0 i;=1 I {12513:...:&,4_1} {It,+2,ft;+3,...,fm_1}

Yi Yo, Yrq, - :rfm)
t'(m—2—1t)!

m—2—ocolin<l n (‘rﬁ,h:‘r&h:'“:*rt’+1_.112{-) (It’+2,hsfﬂ—3,hs“‘ Irm—1 h<l) f
im

(I‘Il.rfg.rfg ',I'-z'.m)
_ EZZ Z Z Z Z t'(m—2—1t)!

t'=0 1=0 im=1 {12513,...,&,_‘_1} {It,+g,ftf+3___...___fm_l}

m—2 —ocoImn<l n (fz,h;fs,h:'“:ftf_q.l,hzlj (It’-q-z,h.-fr’—a,hs'"afm—l,h<1J f(m)(

A ST O ) RS
TP PPN DD 2. R

t’'=0 [=0 Im i1=1 {I2=I3,"',Itf+1} {It’-I—Q’It’-I—S-"“'-‘Im_l}
, m—2 —oo (Ilhsfr&h:“':It’—|—1,h21) (It"—Q,h-sIt’—S‘h:'“:I‘m.—l,h<'!} Im_.h<l (m)
- LVYY Y > g I Pt )
m _ _ t''(m—2—1)!
t'=0 [=0 i;=1 {[2:13:...:&;4_1} {ft,+2:[t;+31...,fm_l} Im

_ (IQ,hsIE'.,h:“':‘rt’—i-l.hZIJ (ft.r_glh.,ftf_g‘h,--':Ln—l,hgfan,h(” m
ZOO y Z | Z fi(1 )(rilrrfz*-rfm'”?rfm)
t'(m—2—1t)!

[=0i;=1 {12:13:...:[t,+1} {It,+21[t,+3___...___fm_ljfm

. m—2
Y

o m
t'=0

- 46
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Newton’s Second Law on Rp
1

Il'f—]f'h_._hl”1 =Fp+ T -on. Fn = Ny, Fr g
M
P, = Z Z P =3 (R + )
m=2 t=1 m=2

l" E_)
(m)
Z U]h peell — _%Ep;ceﬂ



Introducing main interaction tensor/dyad

—= —1 aEp.ceH UE}J cell aEp.ceH
Smain = N - I —
(2 [( da )Ekk( db ):H_< dc Ny

=3 o(m)
m=2 a
m) -1 [[OE™ op™ oE ™)
i‘-‘;ﬂ_;ﬂ_: _l ..’.p?CEH At ‘p:ceﬂ b+ Eo_._ceii c
(2 da db dc

—

Fh: Emain "Oh

where h - gy = Qo 1
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First form of the period dynamics

M

(1’}11}11.1 — (Cmum + T) -on, (h=a, b, c).

from Newton’s second law

ﬂ[Rf'R(_‘; = FLﬁR—}— ? 'Sh ‘;\‘rh — ‘Shl / ‘gh‘

— %A

"-’-_-'fh:hh — Fh‘|‘ T Oh. Fh: Smain "Oh
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The second major step

Instantaneous dynamical equations of the period vectors.

Statistics of the above dynamical equations
over indistinguishable translated states

Forces associated with momentum transportation and statistics over
particle's moving directions are further implemented in the dynamical
equations.
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Now let us consider two states

Only difference is translation between them
from microscopic point of view.
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Since they are indistinguishable from macroscopic

We should take an unweighted average of the
dynamical equations over all such states.
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In all such states, only =,... differs

o O/e O/0 O/0 O/0 ¢/
o O/e O/0 O/0 O/0 O/

p!
rQﬂ"h,hli:l — (?ﬂifbiﬂ + T) *Oh (h — a, b.- C)'
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What we really need is the unweighted average of

—nN

E-mm'ﬂ. or K h

o O/e O/0 O/0 O/0 ¢/
o O/e0 O/0 O/0 O/0 O/

Pf
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What we really need is the unweighted average of

M

Emain  OF Fy

o O/e O/0 O/0 O/0 ¢/
o O/e0 O/0 O/0 O/0 O/

Pf

-->

The total amount of such states can be represented
by the volume of the MD cell € .
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What we really need is the unweighted average of

M

Emain  OF Fy

r/
o O/0 O/0 O/0 O/0 ¢/
o O/0 O/0 O/0 /0 ¢/
o O/e O/0 O/0 O/
o O/e O/0 O/0 O/0 ¢/
o O/e O/0 O/0 /0 ¢/
p/

-->

The total amount of such states can be represented
by the volume of the MD cell € .
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For easy description, let us divide the Ry, part of the
crystal into 7}, = 0 slab (red area) and g part
( area).

L h P R h

e B,
T, = 0 slab

T ="1T,a+1pb + Tc,
]

58



We will only consider anything new in the averaged r,,,
compared with Fy itself. This means there must be
s > 1 particle(s) in T, = 0 slab in all-body interactions.

L h P R h

Pl B,
Ty, = 0 slab

T ="1T,a+1pb + Tc,
]

59



Supposing all possible locations for PP’ plane is 2 ,
the probability for MD particle 7, appearing on
the left side of it is

P s Th = 0 slab

o O/e O/0 O/0 ¢/
o O/e O/0 O/0 ¢/
o O/e O/0 O/0 O/

o O/e O/0 O/0 ¢/

o O/e O/0 O/0 O/

Pf

(h—(ri, — 1)) -on (hg—r; ) on

(2 ()

ro is the position of the left-bottom and far-away vertex of the MD cell

and h[] = h + I -

60



A total of three cases



Case 1, additional ¢ > 1 particle(s) in m-body
interactions in the L part.

P Tn = 0 slab

o O/e O/0 /0 O/
o O/e O/0 O/0 ¢/
o O/e O/0 O/0 ¢/

o O/0 O/0 O/0 O/

o O/e O/0 /0 O/

Pf
averaged net force acting on the s particles by the rest m particles

(I1,nd2, 0, ds n=0) (Tog1,hdag2,n et n<0) (Togrg1,ndsptg2,h Lm0 >0)

1 1
FE:T?"""" a Np sl (m —t — s)! Z Z Z %

{1 12,1} {Tay1 Jaga, - Tage} {leytgr dapegaIm}

5 hg — r; * T
Z( 0 f;u) th}ﬂ”([‘f”rfz,r.‘u:'"1r!'m)

p=1
should be excluded from Fy, as it was unconditionally included in the Fy previously.
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Considering all possible
s =5—-1=0,1,2,---,m—t—1

it can be reduced to

m—t—1

F — Y =
rl t.h Fr],#._t,h
s' =l

(Homda b Jeip1 w<0) (Jego n Jita n Lo w=0)

(hg —r;,) - on () ‘
z QtT(m_?_J.)T Z z f r?'l?rfz"'rfﬁ:"..jl"m.)‘

{IZ:-I."I:"".II-l-l} {L_+Q II-]—’I S }
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Case 2, no particles in Ln but at least one in the R,
part of m-body interactions

P s Th = 0 slab

o /e O/0 O/0 O/
o O/e O/e /0 O/
o O/e O/0 /0 O/

o O/e O/0 O/0 O/

o /e O/0 O/0 O/

Pf
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Employing Newton’s third law

the following averaged force

(Il_h,;2,h1"'1l‘x,h :ﬂj ["rﬂ | l.h."f-'-' |21h,”',-ln1.,h:}ﬂ} ]

F(-rn'} . J. 1 (l].ﬂ - rtl‘u.) = Jll f(?n'j [:I. r r I. )
2,sh T AL I Z Z Z 0 1, IERRN PIEY EE IR
h S\ —s)
( ) {111'[2;'";-".-:} {_I.-f-f—'l;.f::-]-'.h"':!nl} j"[:]'
. ('I-l.hJ;?.hf”ﬂ[H.h ZD:I l:"rﬂ | l.h:'f-"i |21h:l"':ljﬂ'l-.h}ﬁ}
- %o > > et g )
~ Npsl(m—s)! ’ 0 I

(EERIEREN Y | {1 dagasidm]
n 2,003,005, 0=0) (Tap1,ndsp 2,0, Lm0 >0)

(h[} - ril) *Th a(m
- (q-_] m —s)! Z Z Z 0 f:i }(r‘ilﬂrf'ﬂrf:}!'”?rfm)+

'11 1 {11 IJ {I.-r+1:|lr.':+'2_~"'.~!m}

should be substracted from Fy,.
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Case 3, all particles in the m-body interactions

areinthe 7} = 0 slab.Supposing particle I,,,
is the nearest to the right, the probability for PP’
is between particle /. and particle I,,, js

(ri,, —Ti.)-on/Q

P s Th = 0 slab

o O/e O/0 O/0 ¢/
o O/e O/0 O/0 ¢/
o O/e O/0 O/0 O/

o O/e O/0 O/0 ¢/

o O/e O/0 O/0 O/

Pf
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Also using Newton’s third law

the following averaged force

{Ilh IZh '|"-|'|‘ h_u TrE

{”1} — . ri‘?n. 1?; Uh H!.
F!.’-B:h T Nh_ .r”,! : : E (I‘Il rf? r-!i! B IT!L)

1 1 " I‘; *Oh «(m)
- ﬁ_hﬁ Z Z - tI.u_ (CTPEIPPS FAPRRRES A
) {hd2, 0 } p=1
_ ot wde b, d e w=0)
1 1 (hg —ri, ) -on (m)
= Tr fh (I'Ilvrfzvrf;n”'}rfm)
Ny m! Q

{'[l :II'Z:"':I'm.}

1 {II,h1f3:_h:|""_~jlrn,h=ﬂ:]

~ NuQ (m — 1)! Z (ho —ri,) 'Uhf}:“}(rh S TN JAEEEES U
h ' | {11,091}

T IJI-'ril' :n'm.l u}l

o oy {(m) ) -
N ﬂ'? - J.:}l Z Z (hn o r"'l} ghf‘il (r“l?r-fz‘.'rf:s! 3 I '[:rn.)'

i1=1 {fg Ig,-

should be Suhstmﬂted from Fy,.
]



Then F, should be updated to the averaged

TFL— J rrn—1

F, =Fp — F) — Z FO - E‘;”;’,h

_Fh+_ZFtlru' hs

1-1—1

where

Z P

m=2a
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Then F, should be updated to the averaged

Fh =Fh-|-H ZF“I‘“ on = Fr+ Ep “(Th

2-1—1

69



Then F,, should be updated to the averaged

h_Fh+ Ep ‘Oh — £ “0Oh

where e =c¢in+ €5, €,= E : F; ri,
Since Yz
. . : . aF. el
e . —_l {)‘E?’r”““ rjEPJ?ﬁ” {)‘Eju,r:ffﬂ Ff_ = — rp‘:'!'
Emain = QO [( oa ) a-+ ( b ) b+ ( de cl ) {jl‘-;
— 1 aEp,ce.’.E
) 0z “
zcDOF

DOF means all degrees of freedom, which are the
period vectors and MD particle position vectors:

a, b, c, ry,ro, .-+, and r,,.
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Period Dynamics (h=a, b, c)

“sh,hh — ( Emain T T) * Oh

'f'l"h.hl“1 — (? + T) *Oh

where the full interaction tensor

- 1 aEp}nm’.E
TTQ Z ( 0z )Z

zcDOF

(first form)

(improved)
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The last major step

Instantaneous dynamical equations of the period vectors.

Statistics of the above dynamical equations over indistinguishable
translated states

Forces associated with momentum
transportation and statistics over particles’
moving directions
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Now let us consider

forces associated with transportation of momentum
across geometric planes,

even without collision or any other interactions



Forces only due to momentum transportation

But what is such a force ?

This seemingly controversial topic has
been debated extensively.



Considering a single particle m # 0

without being acted by any regular force,
but running with a constant velocity v +# (



Considering a single particle m # 0

without being acted by any regular force,
but running with a constant velocity v +# (

Since it passes through many planes, is
there any additional force acting on it?
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Considering a single particle m # 0

without being acted by any regular force,
but running with a constant velocity v +# (

Since it passes through many planes, is
there any additional force acting on it?
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As a matter of fact,

systems can be defined in two ways.



The first way,

systems are defined based on materials or
particles, as we do normally.

For example, the above single particle can be
employed to define such a system, then no
additional forces need to be considered, in
order to satisfy Newton’s Laws.



The other way,

systems are defined based on space.

For example, for the same single particle running
process, we can define systems like red and green
boxes, only based on space.

L

Anything inside such a closed space belongs to the
system. Otherwise, it is not.
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When the particle passes through

the plane between the red and green systems in A\t
the momentum of each system changes. In order to
satisfy Newton’s laws, we can say there are forces
between the two systems: mv/At and —mv /At
This is the force purely associated with momentum
transportation.

L

These action and reaction forces between the two
space-based systems satisfy Newton’s third law.
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An ideal gas

in @ macroscopic equilibrium state in a closed
container is cut into two halves:

L

Sorry for extremely simplified gas particles!
]




On the right half system

the force associated with momentum transportation
on the left should be balanced by the regular force

acted by the container during collisions with the gas
particles on the right,

so that the right half gas can be in a macroscopic

equilibrium state.
]



Our previous half systems are indeed defined
based on space. Otherwise particles should be traced
down when crossing the PnF, plane. Then such forces
should be considered, while the external stress includes
the forces in collisions between the external walls and

the surface particles. PhQn

Lh
T T NG

MDceII h ceII3h




In all the previous translated-only states

During a unit time, particles pass |I'; - oy
amount of states. Then the total
1 Z o should be added into the
— Z m;r;r; - Op d ical .
() — ynamical equation.

o /e O/0 O/0 O/
o O/e O/e /0 O/
o O/e O/0 /0 O/

o O/e O/0 O/0 O/

o /e O/0 O/0 O/

Pf
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Period Dynamics (h=a, b, c)

apnh = (?m” + T) .o, (first form)
annh = (f{‘ i ?) . O (improved)
- 1 aEp}CE“ )
0 Z ( 0z ) 4
zcDOF
.- g —aN
annh = (“ T T) ' Oh (further improved)

where the instantaneous internal stress
YN s s/ 1 X .
T =& + T T = 6 Z m;r;xr;



The last consideration

apnh = (n u T) . oh (further improved)
where the instantaneous internal stress

s arp cell S l ) .
£ = —— Z T = — Z m;r;r;
£§DOF S 2 i=1

4

The periods should not depend on the
instantaneous directions of particles’
microscopic motion, as they can be
measured macroscopically under constant
external pressure and temperature.



The last unweighted average of the

apnh = (n + T) . o1 (further improved)
where the instantaneous internal stress
g LN s
T =& T
- OF cel —f J— - . .
feg 2 (Pe)s T = SN s
m?DOF ) Q i—1

over all particles” moving directions.



Period Dynamics (h=a, b, c)

_nnf —
pnh = (‘W + T) Oh (further improved)
L . Y’ NV, l n .
™= + T T = TZNJ!..?;_I‘EI“a
S e
apnh = (?T + T) Oh (last)
where the internal stress 7—- + 7

_f: _l (aEp,ceH) >
{2 ZEDOF 0z

ggzz” |I'| ]_EEJR MD [
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Period Dynamics (h=a, b, c)

apnh = (smiﬂ 1 T) . Oh (first form)
O"h.hl“1 — (T; + T) *Oh (Improved)
—_* 1 Z (aEp,ceH)
£ — —— p Z
Q LDOF 0z
- RNV —n
apph = (ﬂ + Y | - on (further improved)
2Ty Z it
ﬂ’h,hll = (’W -+ T) * Oh L ) — (IaSt)

T = SS'ZE;‘ vmp [
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Summary
mit;, =F;, (i=12---.n),

T=¢ + T
I V. ¥ 2 —
] () kMD /
>t 3 (3Ep,wu)
) ey 07
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Further extension

(l-'h_hfl = (T—f + ?) - Oh (h=a. b. c¢)

— 1 aEp}EE” 2 —
T TQ ) ( 9z )ZJFSQE;;_MD I

zcDOF

by combining with forces based on Quantum
mechanics, then applied, especially in
piezoelectric and piezomagnetic simulations.
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Appendixes

GROMACS

Groningen Machine for Chemical Simulations

USER MANUAL
Version 5.0.7
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Appendixes

38 Chapter 3. Algorithms

I you allow ull amsotropic deformations and wse constraints you might have to scale more slowly
or decrease your tmestep o avoid errors from the constraint algorithms. It 15 important o note
that although the Berendsen pressure control algorithm yields a simulation with the correct average
pressure, it does not yield the exact NPT ensemble, and it is not yet clear exactly what errors this
approximation may yield.

Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are important per se (e.g. to calculate ther-
modynamic properties), especially for small systems, it may be a problem that the exact ensemble
is not well defined for the weak-coupling scheme, and that it does not simulate the true NPT
ensemble.
GROMACS also supports constant-pressure simulations using the Parrinello-Rahman approach |39,
40), which is similar to the Nosé-Hoover temperature coupling, and in theory gives the true NPT
ensemble. With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b
obey the matrix equation of motion”

dbz

E = VW' (P Py). (3.62)

The volume of the box is denoted V', and W is a matrix parameter that determines the strength of
the coupling. The matrices # and #. .y are the current and reference pressures, respectively.
The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling.

In most cases you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermo-
stat, but to keep it simple we only show the Parrinello-Rahman modification here:

Iﬂ.z'!‘f F; dr;

= = E_Mﬁ" (3.63)
¥

M = b! [ %+i—fh’] [ (3.64)
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Comparison

db’ 11
gz = VW b (P = Prey)

(}'}thl = (TTL + T) *Oh

— 1 aEp,ceH 2
T = _ﬁ Z ( 92 )z +

zcDOF

(h=a. b. c)

¢ —_—

Erup T

3€2
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Appendixes

LAMMPS Users Manual

4 May 2017 version

http://lammps.sandia.gov - Sandia National Laboratories
Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

The manual
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Appendixes

where U is the system potential energy, P_t is the desired hydrostatic pressure, V and V_0 are the system and
reference volumes, respectively. E_strain is the strain energy expression proposed by Parrinello and Rahman
(Parrinello1981). Taking derivatives of E w.r.L. the box dimensions, and setting these to zero, we [ind that at
the minimum of the objective function, the global system stress tensor P will satisly the relation:

750

LAMMPS Users Manual

P = PI+S, (hy') ho,

where I is the identity matrix, h_0 is the box dimension tensor of the reference cell, and h_0d is the diagonal
part of h_0. 5_¢ is a symmeitric stress tensor that is chosen by LAMMEPS so that the upper-triangular
components ol P equal the stress tensor specilied by the user.

This equation only applies when the box dimensions are equal to those of the relerence dimensions. 11 this is
not the case, then the converged stress tlensor will not equal that specilied by the user. We can resolve this
problem by periodically resetting the relerence dimensions. The keyword nresei_ref controls how often this is
done. I this keyword is not used, or is given a value of zero, then the reference dimensions are set o those of
the initial simulation domain and are never changed. A value of nsfep means thal every nstep minimization
steps, the reference dimensions are set to those of the current simulation domain, Note that resetting the
reference dimensions changes the objective unction and gradients, which sometimes causes the minimization
to fail. This can be resolved by changing the value of nreset, or simply continuing the minimization from a
restart file.
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Comparison

This equation only applies when the box dimensions are equal to those of the reference dimensions. If this is
not the case, then the converged stress tensor will not equal that specified by the user. We can resolve this
problem by periodically resetting the reference dimensions. The keyword nreset_ref controls how often this is
done. If this keyword is not used, or is given a value of zero, then the reference dimensions are set to those of
the initial simulation domain and are never changed. A value of nstep means that every nstep minimization
steps, the reference dimensions are set to those of the current simulation domain. Note that resetting the
reference dimensions changes the objective function and gradients, which sometimes causes the minimization
to fail. This can be resolved by changing the value of nreset, or simply continuing the minimization from a
restart file.

t}'hjhfl: ?4—? *Oh (h:a_. b_. C)

s 1 OFyp cell 2 —
=79 > 5]; z +—=Liup 1

zcDOF

Formula
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