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Introduction and Motivation

Single-photon sources are an integral part of numerous proposals in the
emerging fields of quantum information processing and nanotechnology, in-
cluding quantum computing and quantum cryptography. These schemes
typically require quantum light sources which can emit indistinguishable
single-photons on-demand with high efficiency.

One promising candidate for single-photon sources is a quantum dot (QD)
inside a photonic cavity. QDs are nanoscale semiconductor objects in which
excited electron-hole pairs (excitons) mimic the excited states of an atom.
QDs can be exploited to emit photons into a cavity after pulse triggering,
allowing for them to be used as single-photon sources. However, the solid-
state nature of the QD means that phonons (most importantly longitudinal
acoustic (LA) phonons) intrinsically couple to the exciton states, adding
a rich and complex interaction to the source excitation dynamics. No-
tably, phonons cause decoherence, typically degrading the figures-of-merit
for practical single-photon sources.
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Fig. 1: Schematic of a QD embedded in a photonic crystal waveguide, including typical
characteristic length scales. (a) The atomic composition of a QD. (b) A scanning
tunneling microscopy image of a self-assembled InGaAs QD. (c) A scanning electron
microscopy image of a photonic crystal waveguide, with the location a QD could be

embedded highlighted. Figure ((a) and (c)) from Ref. [1]; (b) from Ref. [2].

n this work, we extend a theoretical proposal by Pathak and Hughes (Ref.
3]) which uses stimulated adiabatic Raman passage (STIRAP) and the QD
piexciton-exciton cascade as a QD-cavity single-photon source, by adding
into the analysis a rigorous model of LA phonon interactions.

Project Goals

e Investigate effects of LA phonon-exciton coupling on efficiency and
indistinguishability of emitted photons

e Perform parameter sweep of laser and cavity detunings to optimize
efficiency of source in presence of phonons

e Explore effects of temperature variation
e Develop efficient computational model to solve master equation

Biexciton Cascade and STIRAP

We model the QD energy levels as a four-level system (biexciton-exciton
cascade) consisting of ground state |g), X and Y linearly polarized excitons
|X) and |Y'), and biexciton (two excitons) state | XX) with energy levels
hwy = 0, lwy, hwy, and hwxx, respectively. We treat a cavity mode at
the system level with creation (destruction) operators 4" (4).
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Fig. 2: STIRAP scheme within the biexciton cascade. A pump pulse couples the
ground-to-X-exciton transition with detuning Ap. A CW laser couples the
exciton-biexciton state with detuning Ap + A; = 0 to satisfy the two-photon resonance
condition. A cavity couples the biexciton state to the Y-exciton with detuning A. By
design, the biexciton and X-exciton states are never significantly populated owing to the

STIRAP process.
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Fig. 3: State space studied in this work — biexciton cascade with phonon and cavity

coupling. Each excited state is coupled to a bath of phonon (bosonic) modes with a set
of coupling constants (assumed real) {\3}, {\(}, and {A*}.

Modelling

Polaron transform is applied to treat phonon-exciton coupling nonpertur-
batively over a wide range of temperatures [4].

Polaron system Hamiltonian:

Hs = hAp | X) (X| = RAC|Y) (Y|

Qp(t) | X) (g| +g|XX)(Y]|a+ H.c.|, (1)

— h(B) |€2 | XX) (X]+

with CW laser €2; = 250 GHz and cavity-exciton coupling g = 50 GHz.
Pump pulse, CW drive and cavity coupling are coherently modified by the
phonon bath displacement (B):
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Phonon spectral distribution J(w) = awde 2% quantifies strength of

InGaAs/GaAs QD LA phonon-exciton coupling with a@ = 0.03 ps? and
hwp, = 0.9 meV, similar to experimental results in Ref. [5]. Unless stated

otherwise, T =5 K.

The system evolution is modelled using an open quantum system
master equation approach in the density matrix formalism. We derive a
time-local master equation using a 2nd-order Born-Markov approximation:
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with drive operators

AQp(t) | X) (g + hQ | XX) (X| + hg | XX) (Y|4 +H.c. (4)
HQp(2) 1X) (g] + iy [XX) (X| + hg | XX) (Y] 5) +He, (5)
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Xn(t,7) = e Ms7/h X (t)e'H's7/" and phonon Green functions

Gg(T) = (B)?[cosh (¢(7)) — 1] (6)
Gu(7) = (B)sinh (¢(7)). (7)

where

J(c«;) (Coth (52‘*’) cos (wT) — isin (m)). (8)

Other decohering phenomena incorporated through Lindblad collapse

operators (O) of the form L[O]p(t) = OpO' — {OTO p}, with
VLX) (X1, AR IY) (XX], /) (X, and /3 g) (Y] for sponta-
neous emission; /274 | XX) (XX|, /74 |X) (X ) (Y| for pure
dephasing; and /K4 for cavity leakage, with 74 = v, = 0.5 GHz, k = 25
GHz, and 74 = 1 GHz except where stated otherwise. The efficiency is
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quantified by the emitted cavity photon number, N, = lim f drr(414)(7).
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Quantum indistinguishability (Z) is quantified by simulating a Hong-Ou-
Mandel interferometry set-up [6]:
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with quantum two-time correlation functions gM(t,7) = (37(t)a(t + 7))
and g@(t, 7) = (&7(t)a(t + 7)a(t + 7)4(t)).

Computational Methods
e Quantum Optics Toolbox for MATLAB [7]

e Master equation solved numericallly with external ODE (RK4) solver

e [wo-time correlation functions found with master equation solver by
use of the quantum regression theorem

Results
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Fig. 4: Populations of states |g) ® |0) (pgg; black line), |Y) ® |0) (p,y; red dashed), and
1Y) ® |1) (py,; blue dotted), where |0) (|1)) denotes the cavity number state with 0 (1)
photons for the QD-cavity system. Also plotted is the expected number of photons
emitted from the cavity (Pems; magenta chain). The pure dephasing rate (of the zero
phonon line) is 74 = 0.5 GHz. The pump pulse (used throughout) is a single period of a
sawtooth wave with maximum amplitude €2,,,x = 2.5g and pulse width g7p = 37, where
g = 50 GHz (inset). (a) Populations without phonons, in agreement with Ref. [3]. (b)
Populations with acoustic phonon coupling at T =5 K.
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Fig. 5: Indistinguishability and emitted photons for resonant excitation (Ap = A¢ = 0)
vs. (a) max pulse strength and (b) pulse width, with and without phonons.
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Fig. 6: (a) Emitted photons and (b) indistinguishability as a function of temperature with
phonons and constant dephasing 79 = 1 GHz (solid line), with a temperature-dependent
dephasing v4(T) = 1 GHz + (2.127 GHz/K) T (following experimental results in Ref.
[8]) and no phonons (dash-dotted line), and with both phonons and a
temperature-variable dephasing (dashed line). Ap = A¢ = 0.
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Fig. 7: Emitted cavity photon number N, plotted as a function of pump pulse detuning
Ap and cavity detuning A¢, with (a) no phonons and (b) phonons. Phonon-mediated

off-resonant excitation is clearly seen, and is expected to increase with pump strength [9].
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Fig. 8: Emitted photon number as function of cavity detuning for (a) resonant pulse
without phonons (red solid line) and with (green dash-dotted line), and (b) off-resonant

pump pulse detuned by AAp = 0.375 meV (green), and hAp = —0.375 meV (blue),
without phonons (solid line) and with (dashed line).
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Fig. 9: Indistinguishability and emitted cavity photon number for off-resonant excitation
(AAp = 0.375 meV; hA¢ = 0.0165 meV) optimized for max N, as a function of (a) max
pulse strength and (b) pulse width, with and without phonons.

Conclusions

e Over 90% efficiency and indistinguishability simultaneously achiev-
able on-resonance for realistic experimental parameters

e Most effects of temperature (even at ~ 4 K) are due to pure de-
phasing (reducible experimentally), not fundamental phonon limits

e Off-resonant excitation allows for near unity (98%) efficiency, but at
the cost of only ~ 86% indistinguishability (Fig. 9)
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