

Applied physics in the clinic: monitoring radiation doses delivered to cancer patients

Louis Archambault, PhD

Assistant professor, Department of Physics, Laval University, Quebec city, QC, Canada Medical Physicist, Centre Hospitalier Universitaire de Québec

- Medical physics is easy to define
 - Application of physics to medicine
- There is a long tradition of using applied physics to improve medicine (both treatments and diagnostics)

- However, the clinic is much different from the lab
- Despite numerous opportunities, crossing the clinical barrier can be challenging
 - Even for those with a biophysics/biomedical backgrounds
- Nevertheless, several hospitals hire physicists
 - Clinical medical physics is a profession

"The Practice of Medical Physics means the use of principles and accepted protocols of physics to assure the correct quality, quantity, and placement of radiation during the performance of a radiological procedure."

- American Association of Physicists in Medicine

- Medical physicists background:
 - BSc in physics or engineering physics
 - MS and/or PhD in medical physics
 - Residency
 - Certification (Canadian College of Medical Physicists)
- Most medical physicists have some time for research
 - They can act as:
 - Principal investigators
 - Collaborators
 - Evaluators of new technologies
 - Facilitators for clinical trials

- Where to find clinical medical physicists?
 - Radiation oncology
 - Diagnostic imaging
 - Nuclear medicine
 - Health/radiation protection

- Where to find clinical medical physicists?
 - Radiation oncology (~75%)
 - Diagnostic imaging
 - Nuclear medicine
 - Health/radiation protection

- What do a medical physicist do?
 - Radiation beam calibration and characterization
 - Image quality assessment
 - Consultation and treatment planning with practitioners to determine dose to be delivered
 - Validate the radiation delivery plans of (nearly) every patient
 Acceptance testing and commissioning
 - Radiation shielding design
 - ... and much more

In radiation oncology, the medical physicist's job is to make sure that the patient receive precisely the intended dose of radiation

Context: radiation oncology (RO)

- Kill (stop) cancer cells with ionizing radiation
 - Most common forms of radiation used:

Particle	Energy range	Production
Photons	200 keV – 20 MeV	Linear accelerator (bremsstrhalung)
Electrons	6 MeV – 20 MeV	Linear accelerator
Proton	70 MeV – 250 MeV	Cyclotron / Synchrotron

- Rarer: Carbon ions, neutrons, pions
- Close to 60% of cancer patients will receive some radiation treatments

Context: radiation oncology (RO)

Main mechanism:

- Net effect:
 - Prevent cells from dividing
- Treatment objective:
 - Deliver a high dose to a tumor target while minimizing dose to healthy tissues

Advances in radiation oncology

- The basic principles of RO are the same since the 1900s
 - Point a tumor target and 'shoot'

Advances in radiation oncology

- Most recent advances aim to:
 - Better see the tumor target
 - Better focus radiation doses on small targets
 - Improve sparing of surrounding tissues to reduce side effects

See the presentation by John Schreiner at 13h30 (Botterel B143) for an excellent overview of modern radiation oncology

Ecosystem

- Centered around the medial linac
 - Used in most treatment delivery
 - Also used:
 - Radioactive sources (brachytherapy)
 - Cyclotron / Synchrotron (protons)

Image from Varian Medical System

Applied physics research in RO

- Different spectra of research
 - From colossal endeavor to tiny tweak to the clinical workflow
 - From purely academic research to assessment of new products
- Often a collaboration between all the actors:
 - Academia
 - Industry
 - Clinical medical physicists
 - Physicians
 - Clinical professionals (e.g. therapists, dosimetrists, nurses)

Applied physics research in RO

- Combining a linac with a MRI
- Clinically viable ion beam accelerator

...

- Multi-institution, big data initiatives
- Developing new dose detectors
- Better imaging modalities
- Better treatment planning system

• • •

- Efficient quality assurance
- Clinical trials to quantify treatment efficiency

• • •

Better interoperability between clinical tools

Current challenges in RO

- Treatments are increasingly complex
 - More taxing for the delivery equipment
 - Less intuitive -> harder to QA

- How can we integrate online imaging capabilities
 - Balancing potential benefits with increased costs and time
 - A daily radiation treatment = 15 minutes
 - Target segmentation
 - How to account for daily morphological variations

Illustration through an example

- Goal: Illustrate how physics research can help answer clinical needs
- One central theme

How can we guarantee that the patient receives the exact dose prescribed by a physician

- Three strategies:
 - Development of a new instrument
 - Image processing and data analysis workflow for patient monitoring
 - Retrospective analysis of treatment plan to guide future treatments

Development of a new instrument

A multipoint scintillation detector

Plastic scintillation detectors (PSD)

- Plastic scintillators have interesting properties for RO
 - Attenuation properties nearly identical to tissues in the MeV
 - Dose in scintillator = dose in tissues
 - Good response
 - Independent to photon/electron energies above ~100 keV
 - Independent of dose rate
 - Online capability
 - Scintillation emitted in a few ns
 - Potential for high spatial resolution
 - < 1 mm is ideal for RO

Overview of a medical PSD

- Simple design: scintillator + optical fiber + photodetector
 - Reflective coating, coupling agent ...
- Integrate the signal over a given irradiation
 - Photon counting nearly impossible due to high dose rate
 - Scintillation light is proportional to dose
 - Cherenkov is an important source of noise

PSD: industry-academia collaboration

- Brief history:
 - 1990s : proof of principle
 - 2000s : demonstration of clinical potential (patent)
 - 2010s: licensing and commercial development
- A commercial prototype was released in 2012
 - Exradin W1 from Standard Imaging
 - A simple but robust device
 - ~ 2 mm³ sensitive volume
 - Readout with photodiodes

Moving forward: multi-points

- Single point PSD is good, but a detector array would be better
 - e.g. monitor dose to the target and to organs at risk
- Arrays can be difficult to use clinically
 - Especially for in vivo applications

Fiber optic bundles

Multi-points PSD

- To build efficient arrays, we can't simply stack more detectors together
- Alternative:
 - Multiple scintillating element along a single optical fiber
 - If we can decouple scintillation and Cherenkov, we can decouple multiple scintillation signal
 - Thus, spatial information can be encoded in the emission spectrum of the scintillating elements

Multi-points PSD

- The fun thing with applied science: scavenging ideas from other fields
- Hyperspectral imaging has tackled a far more complex problem:

Hyperspectral PSD

- Concepts to adapt to PSD
 - Spectral unmixing
 - Determine the fractional amount of source composing the signal
 - Dimensional reduction
 - Determine the best wavebands to use for an optimal unmixing

Archambault et al. Phys. Med. Biol. 2012

F. Therriault-Proulx

F. Therriault-Proulx

F. Therriault-Proulx

Bringing hyperspectral PSD to the clinic

- What remain to be done to bring this new instrument in the clinic?
 - Optimize the design to improve precision
 - Uncertainty < 2% ideal for a clinical dosimeter
 - Demonstrate clinical benefits
 - Commercialize
 - Partnership with the industry or with a new 'startup'

Image processing and data analysis workflow for patient monitoring

Patient classification during radiotherapy

During radiation therapy (RT)

- RT is a long process (up to 6-8 weeks of treatments)
 - Treatment fractionation let us exploit biological differences between cancer and healthy cells
- Morphological changes are frequent during RT
 - However, patients often have a single treatment plan
 - Based on the anatomy at the beginning of RT
 - For the rest of treatment:

Morphological changes

Morphological changes

Adaptive RT

- Adaptive RT: treating the anatomy of the day
 - Desirable, but resource intensive
 - Clinically impossible to implement in most cases
- Shortcuts must be developed
 - Algorithms must do some of the work
 - Add an additional layer of complexity to RT
- However, not all patient changes
 - Can we spot those most at risk?

Automated patient monitoring

- Our goal: deploy an automated patient safety net
 - Using exit (i.e. portal) dose (EPID)
 - EPID contains information on the dose delivered and the anatomy
- Our strategy
 - Track relative changes
 - Classify treatment fractions through machine learning
 - Flag patients for more careful evaluation by a clinical physicist

Tracking patients

- Daily EPID
- Automated image collection
- Comparison to a reference
 - Validate reference with CBCT

PhD student: O. Piron

Tracking patients

- Daily EPID
- Automated image collection
- Comparison to a reference
 - Validate reference with CBCT
 - Relative gamma analysis
- Track image features over time

Only 3 out of 5 gantry angle shown for clarity

PhD student: O. Piron

Patient time series

Each patient is a time series

Time series

Time series are omnipresent in many fields

Stock market analysis

Speech recognition

- Environment
- Climate science
- Gene expression
- ...

- Again, we can get inspiration from others:
 - In this case, we used hidden Markov models

Hidden Markov models (HMM)

- Unsupervised machine learning approach
- Assume a system is composed of N hidden states
 - Each state is a Markov process
 - N given as an input
- Useful for time series
 - Markov process: step k+1 transition determined by step k
 - Used to classify each fraction

Hidden Markov models (HMM)

- S_1 : stable patient, remain close to the reference
- S_2 : light drift, patient is slowly deviating from reference
- S₃: strong drift, large fluctuations from reference
- S_4 : offset, patient is systematically different from reference

Tracking patients

- EPID is a rich (and mostly free) source of information
- Machine learning models can be trained to:
 - Classify patient states
 - Flag patients likely to deviate from their plan
- Thus automated and unbiased tracking of patient appears feasible

A prospective trial is underway to validate this workflow

Retrospective analysis of treatment plans to guide future treatments

A stochastic frontier analysis to improve treatment planning

Treatment planning

- Once a physician decide to treat a patient:
 - CT imaging for treatment planning
 - Tumor and organs at risk segmentation (contours)
 - Manually by the physician and dosimetrists
 - Selection of a treatment modality
 - Photon or electron, static or dynamic ...
 - Dose optimization
 - Try to find the best possible dose distribution
 - Final dose calculation

This whole process typically takes 1 to 2 weeks

Finding the best dose distribution

Hypothesis: the best achievable dose distribution is defined by the patient morphology

- If true:
 - Dose/geometry relationship of past patients can predict dose distribution of future patient

Stochastic frontier analysis (SFA)

- This time, we get our inspiration from economy:
 - The stochastic frontier analysis is used to model the productivity of enterprises
- In SFA, the output of an enterprise is a combination of
 - Technical efficiency
 - Random 'shocks'
- Can be used to model outputs or costs

Stochastic frontier analysis (SFA)

Stochastic frontier analysis (SFA)

- The SFA concept can be adapted to treatment planning
 - Cost frontier = protection of organs at risk
 - Production frontier = optimization of target dose

Geometric parameters

- We extract parameters from the contours
 - Overlap, Hausdorff distance, gradient of overlap ...

These serves as 'inputs'

Computing the frontier

 The degradation, technical efficiency and random variations are optimized by likelihood maximization

Rectum dose in prostate treatment

PhD student: A. Kroshko

Computing the frontier

- It thus possible to find the frontier
 - Then use this frontier to guide future plans

PhD student: A. Kroshko

How to use the frontier

- Using SFA, it is possible to harness information from past plans to improve current treatment quality
 - Help make sure patients receive the best possible dose distribution
 - Planning guidance saves valuable time in the clinic
- Falls in the family of 'knowledge-based planning'
 - However our approach is not dependent on initial plan selection

Conclusion

Conclusion

- Technology in RO is rapidly evolving (and complexifying)
 - Several opportunity for research
- I hope these 3 brief examples showed the diversity of applied physics in the clinic
 - Hardware, imaging, software
 - Feel free to adapt great ideas from other fields
- Clinical medical physicists can help you
 - Explain the needs for new tools and methods
 - They are often eager to contribute to research