Distinguishing the Schwarzschild black hole from the \mathbb{RP}^3 geon using local measurements

K. Ng ¹, R. B. Mann ¹, E. Martín-Martínez ²

¹Department of Physics and Astronomy, University of Waterloo ²Department of Applied Math, University of Waterloo

keith.ng@uwaterloo.ca

May 29, 2017

K. Ng (U of Waterloo)

Identifying geons

May 29, 2017 0 / 17

ELE NOR

The Question

- A detector can detect a reflecting surface (e.g. Casimir-Polder force ¹)
- A detector can detect a local gravitational field (e.g. black hole in flat space ² and AdS ³)
- The equivalence principle suggests that if all fields are in identical states, any two spacetimes should be locally indistinguishable by an observer
- However, the quantum field carries information about global structure, e.g. whether a detector is enclosed by a massive shell ⁴
- Can a detector distinguish a topological identification inside a black hole?

- ³K. K. Ng, L. Hodgkinson, J. Louko, R. B. Mann, E. Martín-Martínez (2014)
- ⁴K. K. Ng, Robert B. Mann, Eduardo Martin-Martinez (2016) → < = > < = > = ∽ < <

K. Ng (U of Waterloo)

¹H. B. G. Casimir, D. Polder (1948)

²L. Hodgkinson, J. Louko, A. C. Ottewill (2014)

Topological Censorship?

- ${\, \rm \bullet \,}$ "Wormholes" are unstable in GR, unless the null energy condition is violated 5
- Nontrivial topologies are hidden behind event horizons
- But this includes *past* event horizons, e.g. white holes...
- Classically, we cannot probe the white hole
- Quantum mechanics predicts the existence of Hawking radiation, which interacts with the topology, and *can* be detected
- Demonstrated using UdW detector transition rates by A. Smith⁶ for an asymptotically AdS 2+1 dimensional spacetime (i.e. BTZ)

K. Ng (U of Waterloo)

Identifying geons

⁵Friedman, Schleich and Witt, 1993, Phys.Rev.Lett.75.1872

The geon

Figure: The \mathbb{RP}^3 geon. Picture taken from Louko and Marolf 1998.

K. Ng (U of Waterloo)

三日 のへで

The Unruh-DeWitt detector model 7 8

- $\bullet\,$ Two-level pointlike system with gap Ω
- Initialized at state $|0\rangle;$ other state is $|\Omega\rangle$
- Negative $\boldsymbol{\Omega}$ means the detector is initially excited
- Coupled to a scalar field

$$H_I = \lambda \chi(\tau) \mu(\tau) \phi(\mathbf{x}(\tau))$$

• Simple expression for transition probability at leading order

$$P(\Omega) = \lambda^2 |raket{0_d}{\mu(0)} |\Omega_d
angle |^2 F(\Omega)$$

$$F(\Omega) = \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} d\tau' \int_{-\infty}^{\infty} d\tau'' \chi(\tau') \chi(\tau'') e^{-i\Omega(\tau''-\tau')} W_{\epsilon}(\tau',\tau'')$$

⁷W. G. Unruh (1976) Notes on Black Hole Evaporation. *Phys. Rev. D* 14:870 ⁸B. S. DeWitt (1979) Quantum Gravity: The new synthesis. *General Relativity: an Einstein Centenary Survey*, ed. S. W. Hawking and W. Israel, Cambridge University Press (Cambridge). pp. 680-745

K. Ng (U of Waterloo)

The \mathbb{RP}^3 geon

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega_{2}^{2}$$
$$f(r) = 1 - \frac{2M}{r}$$

- External spacetime is same as in regular Schwarzschild
- Involution applied to remove parallel exterior

$$J: (T, X, \theta, \phi) \rightarrow (T, -X, \pi - \theta, \phi + \pi)$$

EL OQO

- 4 同 ト 4 ヨ ト 4 ヨ

Making the geon

Figure: The Penrose diagram of the Schwarzschild spacetime and the \mathbb{RP}^3 geon.

K. Ng (U of Waterloo)

May 29, 2017 6 / 17

-∢ ∃ ▶

ELE DOG

The switching function

• Simple switching function

$$\chi(\tau) = e^{-\tau^2/2\sigma^2}$$

- Decreasing σ increases 'width' of $\tilde{\chi}(\tilde{\omega})$
- \bullet Geon response largest at small $\tilde{\omega},$ so we need large σ
- For computation, our 'default' choices were $\sigma=100,~r=3r_{S},~\Omega\ll T_{loc}$

ELE DOG

(4) E (4) E (4)

Responses vs. detector gap (r=3)

Figure: BH (blue) and Geon-part (red) response vs. detector gap

K. Ng (U of Waterloo)

May 29, 2017 8 / 17

Total response vs. detector gap (r=3)

Figure: Total geon response vs. detector gap

Detector response vs. detector location

Figure: BH (blue) and Geon-part (red) response vs. detector position

K. Ng (U of Waterloo)

May 29, 2017 10 / 17

-

Responses vs. width

Figure: BH (blue) and Geon (red) response vs. σ

K. Ng (U of Waterloo)

Identifying geons

May 29, 2017 11 / 17

EL OQO

★ 3 → < 3</p>

Unruh detector response vs. detector location

Figure: BH (blue) and Geon-part (red) response vs. detector position

K. Ng (U of Waterloo)

May 29, 2017 12 / 17

1.5

Unruh responses vs. width

Figure: BH (blue) and Geon (red) response vs. σ

K. Ng (U of Waterloo)

May 29, 2017 13 / 17

EL OQO

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Responses vs. peak switching time

Figure: BH (blue) and Geon (red) response vs. peak switching time

K. Ng (U of Waterloo)

May 29, 2017 14 / 17

-

Transition Rates?

$$\chi_{\tau_0} = \Theta(\tau_0 - \tau), \dot{F}(\Omega) = \partial_{\tau_0} F_{\tau_0}(\Omega)$$

- Sudden switching leads to divergences: $\hat{\chi}_{\tau_0}(\tilde{\omega}) = \sqrt{\frac{\pi}{2}} \delta(\tilde{\omega}) \frac{ie^{i\tau_0\tilde{\omega}}}{\sqrt{2\pi\tilde{\omega}}}$
- These divergences are independent of the field, and depend only on the switching function⁹
- Under certain conditions, these divergences can be eliminated, e.g. when calculating the *difference* between responses, or a time-independent response
- \dot{F}_{BH} and $\Delta \dot{F}_{geon}$ (and therefore $\dot{F}_{geon} = \dot{F}_{BH} + \Delta \dot{F}_{geon}$) can be found

\mathbb{RP}^3 transition rates

- 王I= - のへで

Conclusions

- \star Classically no experiment can distinguish a geon from a black hole
- \star But a UdW detector can distinguish them:
 - Geon contribution to transition rate is detectable
 - Geon contribution vanishes at asymptotic past and future
 - Geon contribution vanishes at asymptotic infinity
 - For long switching times, geon contribution equals BH contribution at low energies
- * A quantum detector can distinguish geons from regular black holes \Rightarrow Even when the only difference is behind the horizon!

(日) (周) (日) (日) (日) (日) (000)

The Klein-Gordon equation

Solving the Klein-Gordon equation proceeds as usual in the Schwarzschild case, with an in/up basis.

See Hodgkinson, Louko and Ottewill, Phys. Rev. D 89, 104002 (2014)

$$r^* = -\int_r^\infty \frac{dr'}{f(r')}$$
$$w_{\omega lm} = (4\pi\omega)^{-1/2} e^{-i\omega t} Y_{lm}(\theta, \phi) r^{-1} \Phi_{\omega lm}(r)$$
$$[\partial_{r^*}^2 + \omega^2 - \tilde{V}(r^*)] \Phi = 0$$
$$\tilde{V}(r) = f(r) V(r), \ V(r) = \frac{l(l+1)}{r^2} + \frac{r_0}{r^3}$$
$$R_{\omega lm} = \Phi_{\omega lm}/r$$

K. Ng (U of Waterloo)

ELE NOR

▲ 臣 ▶ | ▲ 臣 ▶

Hartle-Hawking vacuum

$$F_{BH}(\Omega) = \sum_{l=0}^{\infty} \int_{0}^{\infty} \frac{(2l+1)d\tilde{\omega}}{8\pi\omega\sinh(2\pi\omega)} \left(|R_{\omega l}^{\rm in}|^{2} + |R_{\omega l}^{\rm up}|^{2} \right)$$
$$\times \sqrt{\frac{\sigma^{2}}{\pi}} e^{-\sigma^{2}(\tilde{\omega}^{2}+\Omega^{2})}\cosh(2\pi\omega-2\sigma^{2}\tilde{\omega}\Omega)$$
$$F_{J}(\Omega) = \sum_{l=0}^{\infty} \int_{0}^{\infty} \frac{(-1)^{l}(2l+1)d\tilde{\omega}}{8\pi\omega\sinh(2\pi\omega)} \left(|R_{\omega l}^{\rm in}|^{2} + |R_{\omega l}^{\rm up}|^{2} \right)$$
$$\times \sqrt{\frac{\sigma^{2}}{\pi}} e^{-\sigma^{2}(\tilde{\omega}^{2}+\Omega^{2})}$$
$$= e^{-\sigma^{2}\Omega^{2}} F_{J}(0)$$

K. Ng (U of Waterloo)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unruh vacuum

The Unruh vacuum represents a radiating black hole that does *not* receive radiation from afar.

$$F_{BH,U} = \sum_{l=0}^{\infty} \int_{0}^{\infty} \frac{(2l+1)d\tilde{\omega}}{8\pi\omega} \sqrt{\frac{\sigma^{2}}{\pi}} \left(e^{-\sigma^{2}(\tilde{\omega}-\Omega)^{2}} |R_{\omega l}^{\mathrm{in}}|^{2} + e^{-\sigma(\tilde{\omega}^{2}+\Omega^{2})} \frac{\cosh(2\pi\omega-2\sigma\tilde{\omega}\Omega)}{\sinh(2\pi\omega)} |R_{\omega l}^{\mathrm{up}}|^{2} \right)$$
(1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ELE DQC

\mathbb{RP}^3 transition rates

$$\begin{split} \dot{F}_{BH}(\Omega) &= \sum_{l=0}^{\infty} \frac{2l+1}{16\pi\tilde{\Omega}\sinh(2\pi\tilde{\Omega})} (|R_{\tilde{\Omega}l}^{in}|^2 + |R_{\tilde{\Omega}l}^{up}|^2) \\ &\times e^{-2\pi\tilde{\Omega}} \\ \Delta \dot{F}_{geon}(\Omega) &= \sum_{l=0}^{\infty} \frac{(-1)^l(2l+1)}{16\pi\tilde{\Omega}\sinh(2\pi\tilde{\Omega})} (|R_{\tilde{\Omega}l}^{in}|^2 + |R_{\tilde{\Omega}l}^{up}|^2) \\ &\times \cos(2\tau_0\Omega) \\ &+ \sum_{l=0}^{\infty} \int_0^{\infty} \frac{(-1)^l(2l+1)d\tilde{\omega}}{16\pi\omega\sinh(2\pi\omega)} (|R_{\omega l}^{in}|^2 + |R_{\omega l}^{up}|^2) \\ &\times \frac{2\tilde{\omega}\sin(2\tau_0\tilde{\omega})}{\pi(\tilde{\omega}^2 - \Omega^2)} \\ \tilde{\Omega} = \Omega\sqrt{1 - 1/r} \end{split}$$

K. Ng (U of Waterloo)