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INTRO

A black hole is defined by its horizons: the “frontier between

things observable and things unobservable”. Black hole

mechanics and thermodynamics developed in the 1970s are

based on event horizons (null surfaces) for stationary black

holes.

Realistic black holes are ultimately non-stationary:

astrophysical BH: interacts with accretion disk/fluid, with a

companion in a binary system; BH mergers (LIGO

detections of grav. waves)

mathematical BH: Hawking radiation, backreaction;

embedded in dynamical universe.
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An event horizon is a (connected component of) the causal

past of future null infinity I +. Trace back all the light rays which

make it to infinity until they hit the boundary of the black hole

region (from which light cannot escape).

It is a global and teleological concept, requires the knowledge

of the entire causal structure of spacetime. Virtually useless for

highly dynamical situations.

The apparent/trapping horizon is a quasilocal concept.
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Apparent/trapping horizons defined using congruences of null

rays (no reference to global structure):

outgoing null geodesics (tangent la)

ingoing null geodesics (tangent na)

their expansions θ(+) = ∇c lc , θ(−) = ∇cnc

a future apparent horizon is a surface defined by

θ(+) = 0 and θ(−) < 0

a future outer trapping horizon is characterized by

θ(+) = 0

θ(−) < 0

nc∇cθ(+) < 0
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It is much easier to locate quasilocal AHs than event horizons.

The two recent LIGO detections of black hole mergers

measured masses/orbital parameters by comparing data with

templates of grav. waveforms built using AHs

in astrophysics, we use AHs, not event horizons
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Problem: apparent horizons depend on the foliation (3 + 1

spacetime splitting, or observer). Epitomized by the fact that in

Schwarzschild space there exist (contrived) foliations with no

AHs (Wald & Iyer 1991; Schnetter & Krishnan 2006).

Does the existence of a (dynamical) BH depend on the

observer?

A real problem, but no better candidate than AHs (unless BH is

completely isolated). Try to live with this problem.

The problem would be alleviated (not solved) if there were

“preferred foliations” (e.g., fixed by symmetries). Fixing the

observer is already necessary, e.g., when computing the BH

temperature in QFT.
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Restrict to GR (no theories with preferred frames and Lorentz

violation).

In the presence of symmetry, the symmetric solution breaks the

invariance of the general theory, so a symmetric foliation seems

reasonable. Compare with FLRW and comoving observers,

which are preferred in some physical sense–they are the only

ones who see the cosmic microwave background

homogeneous and isotropic (apart from small fluctuations

δT/T ∼ 10−5).
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A natural solution?

Consider a spacetime (M, gab), let S be a spacelike,

embedded, compact, orientable 2-surface which lies in some

hypersurface H that is a surface of simultaneity for some family

of observers ua. Let

hab = 2-metric induced by gab on S;

R(h) = Ricci scalar of hab;

± denote outgoing/ingoing null geodesic congruences from S;

θ(±) = their expansions;

σ
(±)
ab = their shear tensors;

ωa = anholonomicity (projection onto S of the commutator of

the null normals to S);

µ = volume 2-form on S; A = area of S.
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The Hawking-Hayward energy used in BH studies is

MHH =
1

8π

√

A

16π

∫

S
µ

(

R(h) + θ(+)θ(−) −
1

2
σ
(+)
ab σab

(−) − 2ωaω
a

)
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A possible (maybe natural) choice is identifying the observer’s

4-velocity ua with the (timelike) normal na to S, i.e., picking the

observers who see S and the matter on it at rest. MHH is the

0-component of a (timelike) 4-momentum vector Pa and is

naturally gauge-dependent. As in SR, the “mass” of a particle is

the rest mass, so the observer defining the AH and its

quasilocal mass would be the one that sees the AH at rest.
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Does it work when applied to AHs? NO, because:

AHs can be time/space/light-like and S is the 2-D

intersection of the 3-D AH worldtube (generated by a

vector field ta) with a time slice. This is always a 2-D

spacelike surface, but setting ua = na implies ua ∝ ta,

which can be null or spacelike and the definition of MHH is

invalid.

In practice the AH is never at rest in the frames used in

numerical collapse studies (e.g., comoving gauge, the AH

is never comoving).

Need to fix ua 6= na but how? No preferred ua in general

spacetimes, but there are preferred ua in spherical symmetry.
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SPHERICAL SYMMETRY

Adopt a pragmatic approach: no cure for the

foliation-dependence problem, but it can be alleviated in

spherical symmetry (SS). There is a restricted

gauge-independence of the AHs if we limit to spherically

symmetric foliations.

In SS the AHs are located by the scalar equation

∇cR∇cR = 0

where R = areal radius (a geometric, gauge-invariant quantity).

All SS foliations produce the same AHs
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AHs tied to the Misner-Sharp-Hernandez mass MMSH (special

case of Hawking-Hayward quasilocal energy, internal energy in

the 1st law of BH thermodynamics), which satisfies

1 − 2MMSH

R
= ∇cR∇cR

and, on the apparent horizons,

RAH = 2MMSH (RAH)

like for the Schwarzschild black hole (but now dynamical)
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Choose observers (foliations) adapted to SS:

uµ =
(

u0, u1, 0, 0
)

in coordinates adapted to the SS. In general, 2-sphere S is in

radial motion w.r.t observers ua.

Check comoving gauge and Kodama gauge, the two most used

in the literature.
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COMOVING GAUGE

Mostly used in studies of gravitational collapse: ua is the

4-velocity of the collapsing (perfect) fluid, described by the

stress-energy tensor

Tab = (P + ρ) uaub + Pgab

Line element is

ds2 = −e2φ(t ,r)dt2 + eλ(t ,r)dr2 + R2(t , r)dΩ2
(2)

(no heat flux uaT abg
(3)
bc in this gauge). AHs are almost never

comoving with the fluid and

uµ =
(

e−φ, 0, 0, 0
)

6= nµ of S
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Tools adapted to comoving gauge:

Dt = e−φ ∂t derivative w.r.t. proper time

Dr = e−λ/2∂r derivative w.r.t. proper radius

and

U ≡ DtR = e−φṘ ≡ e−φ∂tR

Γ ≡ Dr R = e−λ/2R′ ≡ e−λ/2∂r R
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The equation locating the AHs is (Helou, Musco & Miller 2016)

∇cR∇cR = 0 ⇔ Γ
2−U2 = 0

The line element is rewritten as

ds2 = − Ṙ2

U2
dt2 +

R′2

Γ2
dr2 + R2dΩ2

(2)

If τ ≡ proper time of comoving observer,

dR

dτ
= U + Γv

and, at the AH,

vAH =
dR

dτ

∣

∣

∣

∣

∣

AH

=
1 + 8πR2

AHP

1 − 8πR2
AHρ
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KODAMA GAUGE

Mostly used in the thermodynamics of dynamical horizons;

based on the Kodama vector

K a ≡ ǫab∇bR

(ǫab = volume form of 2-metric hab), lies in (T ,R)-subspace

orthogonal to 2-spheres of symmetry, defined in

gauge-independent way.

Ja ≡ GabKb is surprisingly conserved, ∇bJb = 0 (“Kodama

miracle”), and MMSH is the corresponding Noether charge.

The line element is

ds2 = g00(T ,R)dT 2 + g11(T ,R)dR2 + R2dΩ2
(2)
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The AHs are located by

gRR(T ,R) = 0

K a = 1√
|gTT |gRR

(

∂
∂T

)a
identifies a preferred “Kodama time” and

is a substitute for a timelike Killing vector where there is none.

K a is

timelike outside AH

null on AH

spacelike inside.
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The “tunneling method” uses this time to compute the surface

gravity κ and temperature T = κ/2π of dynamical BHs.

Identify the surface S in the definition of MHH = MMSH with the

AH and use the Kodama observer. Then MHH is the

“Newtonian” mass in a frame in which there is no spatial flow of

Kodama energy 6= the frame in which S is at rest.

The AH is in radial motion in the Kodama foliation since n1 6= 0.

The Kodama current in Kodama coords. is

Jµ =
(

G00K0,G
10K0, 0, 0

)
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RELATION BETWEEN COMOVING AND KODAMA GAUGES

Find transformation between comoving and Kodama gauges:

R = R(t , r) → dr =
dR − Ṙdt

R′

sub into comoving gauge line element

ds2 = −e2φdt2 + eλdr2 + R2dΩ2
(2)

= −
(

e2φ − Ṙ2

R′2

)

dt2 +
eλ

R′2
dR2−2Ṙeλ

R′2
dtdR + R2dΩ2

(2)
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eliminate cross-term in dtdR by redefining time coordinate

t → T (t , r) such that

dT =
1

F
(dt + βdR)

where

F = integrating factor guaranteeing that dT is exact

β(t ,R) = function to be determined

Then

ds2 = ... + 2F

[

β

(

e2φ − Ṙ2eλ

R′2

)

− Ṙeλ

R′2

]

dTdR + ...

set

β(t ,R) =
Ṙ eλ

R′2
(

e2φ − eλṘ2/R′2
)



Intro Spherical symmetry Comoving and Kodama gauges Conclusions

Then line element is diagonalized

ds2 = −
(

e2φ − Ṙ2eλ

R′2

)

F 2dT 2 +
eλ+2φdR2

R′2e2φ − Ṙ2eλ
+ R2dΩ2

(2)

= −e2φ

(

1 − U2

Γ2

)

F 2dT 2 +
dR2

Γ2 − U2
+ R2dΩ2

(2)

the equation locating the apparent horizons is now

∇cR∇cR = 0 ⇔ gRR = 0 ⇔ U = ± Γ

AHs in comoving gauge coincide with AHs in Kodama

gauge

(− for black hole AH, + for cosmological AH)
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4-velocity of Kodama observers

u
µ
(K ) =

(

e−φ

F
√

1 − U2/Γ2
, 0, 0, 0

)

Consider coordinate transformation

xµ (comoving) → xµ′

(Kodama), then

u
µ′

(C) =
∂xµ′

∂xµ
u
µ
(C) = e−φ∂xµ

∂t
=

(

e−φ

F
(

1 − U2/Γ2
) ,U, 0, 0

)

and

ua
(K )u

(C)
a = − 1

√

1 − U2/Γ2
= −γ (vrelative)

|vrelative| =
∣

∣

∣

∣

U

Γ

∣

∣

∣

∣

, |vrelative|AH = 1
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Even though AHs are the same for Kodama and comoving

observers, these surfaces are perceived differently:

they accelerate w.r.t. one another;

vacuum state (Kodama) 6= vacuum state (comoving);

surface gravities κ(K ) 6= κ(C);

black hole temperatures T(K ) 6= T(C). Thermodynamics

remains fully gauge-dependent.

Example: 3-velocity of AH

(

v
(K )
AH

)2
=

(

g00dR

g11dt

)2

= 1 6=
(

v
(C)
AH

)2
=

1 + 8πR2
AHP

1 − 8πR2
AHρ



Intro Spherical symmetry Comoving and Kodama gauges Conclusions

CONCLUSIONS

Event horizons useless in dynamical situations. AHs used,

but they depend on the foliation. Does the existence of a

BH depend on the observer?

In general, no solution yet to this problem → pragmatic

approach.

Spherical symmetric foliations natural in the presence of

spherical symmetry. With this restriction,

foliation-dependence problem is circumvented (but BH

thermodynamics remains fully gauge-dependent).

Checked explicitly for the two most used foliations.

What should we do in the general situation (no

symmetries)?
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