Thermalization by Rapid Repeated Interaction

Daniel Grimmer Eduardo Martin-Martinez Robert Mann

University of Waterloo Institute for Quantum Computing

May 31, 2017

Repeated Interaction with Bits of Environment

What dynamics emerge under bombardment by the environment? Decoherence? Purification? Thermalization?

Atom bombarded by a series of atoms/light pulses:

Cavity bombarded by atoms (e.g. Entanglement Farming¹):

¹E. Martin-Martinez, E. Brown, W. Donnelly, A. Kempf; PRA 88, 052310 (2013)

Rapid Repeated Interaction Formalism (RRIF)

RRIF considers a systems, S, which has discrete-time evolution,

For fixed δt : $\rho_{\mathcal{S}}(n\,\delta t) = \phi(\delta t)[\dots\phi(\delta t)[\rho_{\mathcal{S}}(0)]\dots] = \phi(\delta t)^n[\rho_{\mathcal{S}}(0)].$

where $\phi(\delta t)$ is CPTP has $\phi(0) = \mathbf{1}$ and $\phi'(0)$ exists

(nothing happens in no time), ts (things happen at a finite rate).

Rapid Repeated Interaction Formalism (RRIF)

RRIF considers a systems, S, which has discrete-time evolution,

For fixed
$$\delta t$$
: $\rho_{\mathcal{S}}(n\,\delta t) = \phi(\delta t)[\dots\phi(\delta t)[\rho_{\mathcal{S}}(0)]\dots] = \phi(\delta t)^n[\rho_{\mathcal{S}}(0)].$

where $\phi(\delta t)$ is CPTP has $\phi(0) = \mathbf{1}$ (nothing happens in no time), and $\phi'(0)$ exists (things happen at a finite rate).

For example, $\phi(\delta t)[\rho_{\mathsf{S}}] = \mathsf{Tr}_{\mathsf{A}}\Big(\exp(-\mathrm{i}\,\delta t\,\hat{H}/\hbar)(\rho_{\mathsf{S}}\otimes\rho_{\mathsf{A}})\exp(\mathrm{i}\,\delta t\,\hat{H}/\hbar)\Big)$

Rapid Repeated Interaction Formalism (RRIF)

RRIF considers a systems, S, which has discrete-time evolution,

For fixed
$$\delta t$$
: $\rho_{\mathcal{S}}(n\,\delta t) = \phi(\delta t)[\dots\phi(\delta t)[\rho_{\mathcal{S}}(0)]\dots] = \phi(\delta t)^n[\rho_{\mathcal{S}}(0)].$

where $\phi(\delta t)$ is CPTP has $\phi(0) = \mathbf{1}$ (nothing happens in no time), and $\phi'(0)$ exists (things happen at a finite rate).

$$\mathsf{For example,} \ \phi(\delta t)[\rho_\mathsf{S}] = \mathsf{Tr}_\mathsf{A}\Big(\mathsf{exp}(-\mathrm{i}\,\delta t\,\hat{H}/\hbar)(\rho_\mathsf{S}\otimes\rho_\mathsf{A})\,\mathsf{exp}(\mathrm{i}\,\delta t\,\hat{H}/\hbar)\Big)$$

We find the **unique** continuous-time interpolation scheme which: 1) is (time independent) Markovian with effective Liouvillian $\mathcal{L}_{\delta t}$, 2) exactly fits the discrete time points, and 3) is well defined as $\delta t \rightarrow 0$.

$$rac{d}{dt}
ho_{\mathsf{S}}(t) = \mathcal{L}_{\delta t}[
ho_{\mathsf{S}}(t)] \quad ext{with} \quad \mathcal{L}_{\delta t} = rac{1}{\delta t} \mathsf{Log}ig(\phi(\delta t)ig).$$

Series Expansions

Taking
$$\hat{H} = \hat{H}_{S} \otimes \hat{\mathbf{1}} + \hat{\mathbf{1}} \otimes \hat{H}_{A} + \hat{H}_{SA}$$
 and
 $\phi(\delta t)[\rho_{S}] = \operatorname{Tr}_{A}\left(\exp(-\mathrm{i}\,\delta t\,\hat{H}/\hbar)(\rho_{S}\otimes\rho_{A})\exp(\mathrm{i}\,\delta t\,\hat{H}/\hbar)\right)$

We can expand the update map as

$$\phi(\delta t) = \mathbf{1} + \delta t \,\phi_1 + \delta t^2 \,\phi_2 + \delta t^3 \,\phi_3 + \dots \,.$$

Using this we can expand the effective Liouvillian as,

$$\mathcal{L}_{\delta t} = \frac{1}{\delta t} \mathsf{Log}(\phi(\delta t)) = \mathcal{L}_0 + \delta t \, \mathcal{L}_1 + \delta t^2 \, \mathcal{L}_2 + \delta t^3 \, \mathcal{L}_3 + \dots$$

ultimately in terms of in terms of $\hat{H}_{\rm S}$, $\hat{H}_{\rm A}$, $\hat{H}_{\rm SA}$, and $\rho_{\rm A}$.

Series Expansions

Taking
$$\hat{H} = \hat{H}_{S} \otimes \hat{\mathbf{1}} + \hat{\mathbf{1}} \otimes \hat{H}_{A} + \hat{H}_{SA}$$
 and
 $\phi(\delta t)[\rho_{S}] = \operatorname{Tr}_{A}\left(\exp(-\mathrm{i}\,\delta t\,\hat{H}/\hbar)(\rho_{S}\otimes\rho_{A})\exp(\mathrm{i}\,\delta t\,\hat{H}/\hbar)\right)$

We can expand the update map as

$$\phi(\delta t) = \mathbf{1} + \delta t \,\phi_1 + \delta t^2 \,\phi_2 + \delta t^3 \,\phi_3 + \dots$$

Using this we can expand the effective Liouvillian as,

$$\mathcal{L}_{\delta t} = rac{1}{\delta t} \mathsf{Log}ig(\phi(\delta t)ig) = \mathcal{L}_0 + \delta t \, \mathcal{L}_1 + \delta t^2 \, \mathcal{L}_2 + \delta t^3 \, \mathcal{L}_3 + \dots$$

ultimately in terms of in terms of $\hat{H}_{\rm S}$, $\hat{H}_{\rm A}$, $\hat{H}_{\rm SA}$, and $\rho_{\rm A}$.

The master equation for the interpolation scheme is thus expanded as,

$$\frac{d}{dt}\rho_{\mathsf{S}}(t) = \mathcal{L}_0[\rho_{\mathsf{S}}(t)] + \delta t \,\mathcal{L}_1[\rho_{\mathsf{S}}(t)] + \delta t^2 \mathcal{L}_2[\rho_{\mathsf{S}}(t)] + \delta t^3 \mathcal{L}_3[\rho_{\mathsf{S}}(t)] + \dots$$

Q: What happens as $\delta t \rightarrow 0$? (What is \mathcal{L}_0 like?)

²D. Layden, E. Martin-Martinez and A. Kempf; Phys. Rev. A 93, 040301(R) (2016) ³D. Grimmer, D. Layden, R. B. Mann, and E. Martin-Martinez; ArXiv:1605.04302;

- **Q:** What happens as $\delta t \rightarrow 0$? (What is \mathcal{L}_0 like?)
- **A:** The evolution is unitary, but nontrivial²!

$$\mathcal{L}_{0}[\rho] = \frac{-1}{\hbar} [\hat{H}_{\text{eff}}, \rho] \quad , \qquad \hat{H}_{\text{eff}} = \hat{H}_{S} + \text{Tr}_{A} (\hat{H}_{\text{SA}} \rho_{\text{A}})$$

²D. Layden, E. Martin-Martinez and A. Kempf; Phys. Rev. A 93, 040301(R) (2016) ³D. Grimmer, D. Layden, R. B. Mann, and E. Martin-Martinez; ArXiv:1605.04302;

- **Q:** What happens as $\delta t \rightarrow 0$? (What is \mathcal{L}_0 like?)
- A: The evolution is unitary, but nontrivial²!

$$\mathcal{L}_{0}[\rho] = \frac{-i}{\hbar} [\hat{H}_{\text{eff}}, \rho] \quad , \qquad \hat{H}_{\text{eff}} = \hat{H}_{S} + \text{Tr}_{A} (\hat{H}_{\text{SA}} \rho_{\text{A}})$$

The ancilla *push* the system dynamics. But there is no quantum information flow.

²D. Layden, E. Martin-Martinez and A. Kempf; Phys. Rev. A 93, 040301(R) (2016) ³D. Grimmer, D. Layden, R. B. Mann, and E. Martin-Martinez; ArXiv:1605.04302;

Q: What happens as $\delta t \rightarrow 0$? (What is \mathcal{L}_0 like?)

A: The evolution is unitary, but nontrivial²!

$$\mathcal{L}_{0}[\rho] = \frac{-i}{\hbar} [\hat{H}_{\text{eff}}, \rho] \quad , \qquad \hat{H}_{\text{eff}} = \hat{H}_{S} + \text{Tr}_{A} (\hat{H}_{\text{SA}} \rho_{\text{A}})$$

The ancilla *push* the system dynamics. But there is no quantum information flow.

The system is insulated from its environment. But still allows for universal unitary control.

²D. Layden, E. Martin-Martinez and A. Kempf; Phys. Rev. A 93, 040301(R) (2016) ³D. Grimmer, D. Layden, R. B. Mann, and E. Martin-Martinez; ArXiv:1605.04302;

Q: What happens as $\delta t \rightarrow 0$? (What is \mathcal{L}_0 like?)

A: The evolution is unitary, but nontrivial²!

$$\mathcal{L}_{0}[\rho] = \frac{-1}{\hbar} [\hat{H}_{\text{eff}}, \rho] \quad , \qquad \hat{H}_{\text{eff}} = \hat{H}_{S} + \text{Tr}_{A} (\hat{H}_{\text{SA}} \rho_{\text{A}})$$

The ancilla *push* the system dynamics. But there is no quantum information flow.

The system is insulated from its environment. But still allows for universal unitary control.

Outside of the limit $\delta t \rightarrow 0$, the dynamics generically has decoherence³.

²D. Layden, E. Martin-Martinez and A. Kempf; Phys. Rev. A 93, 040301(R) (2016)

³D. Grimmer, D. Layden, R. B. Mann, and E. Martin-Martinez; ArXiv:1605.04302;

Q: Can a system be purified by rapid bombardment?

⁴D. Grimmer, R. B. Mann, and E. Martin-Martinez; ArXiv:1611.07530; (PRA, 2017) ⁵D. A. Lidar, A. Shabani, and R. Alicki. Chem. Phys. 332, 82 (2006)

Q: Can a system be purified by rapid bombardment?

A: Purification requires a sufficiently complex interaction⁴.

⁴D. Grimmer, R. B. Mann, and E. Martin-Martinez; ArXiv:1611.07530; (PRA, 2017)
 ⁵D. A. Lidar, A. Shabani, and R. Alicki. Chem. Phys. 332, 82 (2006)

Q: Can a system be purified by rapid bombardment?

A: Purification requires a sufficiently complex interaction⁴.

Dynamics generated by some \mathcal{L} can purify if and only if the dynamics moves the maximally mixed state, $\mathcal{L}[\hat{I}] \neq 0^5$.

⁴D. Grimmer, R. B. Mann, and E. Martin-Martinez; ArXiv:1611.07530; (PRA, 2017) ⁵D. A. Lidar, A. Shabani, and R. Alicki. Chem. Phys. 332, 82 (2006)

Q: Can a system be purified by rapid bombardment?A: Purification requires a sufficiently complex interaction⁴.

Dynamics generated by some \mathcal{L} can purify if and only if the dynamics moves the maximally mixed state, $\mathcal{L}[\hat{I}] \neq 0^5$.

Since \mathcal{L}_0 generates unitary evolution we have $\mathcal{L}_0[\hat{I}] = 0$. When can \mathcal{L}_1 purify $(\mathcal{L}_1[\hat{I}] \neq 0)$?

⁴D. Grimmer, R. B. Mann, and E. Martin-Martinez; ArXiv:1611.07530; (PRA, 2017) ⁵D. A. Lidar, A. Shabani, and R. Alicki. Chem. Phys. 332, 82 (2006)

Q: Can a system be purified by rapid bombardment?A: Purification requires a sufficiently complex interaction⁴.

Dynamics generated by some \mathcal{L} can purify if and only if the dynamics moves the maximally mixed state, $\mathcal{L}[\hat{I}] \neq 0^5$.

Since \mathcal{L}_0 generates unitary evolution we have $\mathcal{L}_0[\hat{I}] = 0$. When can \mathcal{L}_1 purify $(\mathcal{L}_1[\hat{I}] \neq 0)$?

Expanding a generic interaction Hamiltonian as $\hat{H}_{\mathsf{SA}} = \sum_j \hat{Q}_j \otimes \hat{R}_j$ we find

$$\mathcal{L}_{1}[\hat{I}] = \frac{1}{2} \left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \sum_{i,j} [\hat{Q}_{i}, \hat{Q}_{j}] \operatorname{Tr}_{\mathsf{A}}\left([\hat{R}_{i}, \hat{R}_{j}]\rho_{\mathsf{A}}\right).$$

⁴D. Grimmer, R. B. Mann, and E. Martin-Martinez; ArXiv:1611.07530; (PRA, 2017)
 ⁵D. A. Lidar, A. Shabani, and R. Alicki. Chem. Phys. 332, 82 (2006)

In order for the interaction Hamiltonian $\hat{H}_{SA} = \sum_j \hat{Q}_j \otimes \hat{R}_j$ to purify at first order in rapid bombardment one needs

$$\mathcal{L}_{1}[\hat{I}] = \frac{1}{2} \left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \sum_{i,j} \left[\hat{Q}_{i}, \hat{Q}_{j}\right] \operatorname{Tr}_{\mathsf{A}}\left(\left[\hat{R}_{i}, \hat{R}_{j}\right]\rho_{\mathsf{A}}\right) \neq 0$$

In order for the interaction Hamiltonian $\hat{H}_{SA} = \sum_j \hat{Q}_j \otimes \hat{R}_j$ to purify at first order in rapid bombardment one needs

$$\mathcal{L}_{1}[\hat{I}] = \frac{1}{2} \left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \sum_{i,j} \left[\hat{Q}_{i}, \hat{Q}_{j}\right] \operatorname{Tr}_{\mathsf{A}}\left(\left[\hat{R}_{i}, \hat{R}_{j}\right]\rho_{\mathsf{A}}\right) \neq 0$$

Thus the simple interaction Hamiltonian $\hat{H}_{SA} = \hat{Q}_S \otimes \hat{R}_A$ cannot purify in rapid bombardment.

In order for the interaction Hamiltonian $\hat{H}_{SA} = \sum_j \hat{Q}_j \otimes \hat{R}_j$ to purify at first order in rapid bombardment one needs

$$\mathcal{L}_{1}[\hat{I}] = \frac{1}{2} \left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \sum_{i,j} \left[\hat{Q}_{i}, \hat{Q}_{j}\right] \operatorname{Tr}_{\mathsf{A}}\left(\left[\hat{R}_{i}, \hat{R}_{j}\right]\rho_{\mathsf{A}}\right) \neq 0$$

Thus the simple interaction Hamiltonian $\hat{H}_{SA} = \hat{Q}_S \otimes \hat{R}_A$ cannot purify in rapid bombardment.

The isotropic spin-spin interaction $\hat{H}_{SA} = \hat{\sigma}_{S} \cdot \hat{\sigma}_{A}$ in fact **can** purify in rapid bombardment.

In order for the interaction Hamiltonian $\hat{H}_{SA} = \sum_j \hat{Q}_j \otimes \hat{R}_j$ to purify at first order in rapid bombardment one needs

$$\mathcal{L}_{1}[\hat{I}] = \frac{1}{2} \left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \sum_{i,j} \left[\hat{Q}_{i}, \hat{Q}_{j}\right] \operatorname{Tr}_{\mathsf{A}}\left(\left[\hat{R}_{i}, \hat{R}_{j}\right]\rho_{\mathsf{A}}\right) \neq 0$$

Thus the simple interaction Hamiltonian $\hat{H}_{SA} = \hat{Q}_S \otimes \hat{R}_A$ cannot purify in rapid bombardment.

The isotropic spin-spin interaction $\hat{H}_{SA} = \hat{\sigma}_{S} \cdot \hat{\sigma}_{A}$ in fact **can** purify in rapid bombardment.

The light-matter interaction up to E4

$$\hat{H}_{SA} = \underbrace{\hat{\mathbf{x}}_{S} \cdot \hat{\mathbf{E}}_{A}}_{\text{Electric Dipole}} + \underbrace{\hat{\mathbf{L}}_{S} \cdot \hat{\mathbf{B}}_{A}}_{\text{Magnetic Dipole}} + \underbrace{\hat{\mathbf{x}}_{S} \nabla \hat{\mathbf{E}}_{A} \hat{\mathbf{x}}_{S}}_{\text{Electric Quadrupole}}$$

cannot purify in rapid bombardment⁶.

Q: Would a system rapidly bombarded by constituents of a thermal environment thermalize?

Q: Would a system rapidly bombarded by constituents of a thermal environment thermalize?

A: Only a very specific family of interaction Hamiltonians thermalize in rapid bombardment.

Q: Would a system rapidly bombarded by constituents of a thermal environment thermalize?

A: Only a very specific family of interaction Hamiltonians thermalize in rapid bombardment.

Consider a harmonic oscillator rapidly bombarded by thermal oscillators under a quadratic interaction Hamiltonian,

$$\hat{H}_{\mathsf{S}\mathsf{A}} = \begin{pmatrix} \hat{x}_{\mathsf{S}} & \hat{p}_{\mathsf{S}} \end{pmatrix} \begin{pmatrix} g_{\mathsf{x}\mathsf{x}} & g_{\mathsf{x}\mathsf{p}} \\ g_{\mathsf{p}\mathsf{x}} & g_{\mathsf{p}\mathsf{p}} \end{pmatrix} \begin{pmatrix} \hat{x}_{\mathsf{A}} \\ \hat{p}_{\mathsf{A}} \end{pmatrix}$$
$$= \hat{\boldsymbol{X}}_{\mathsf{S}}^{\mathsf{T}} G \, \hat{\boldsymbol{X}}_{\mathsf{A}}$$

Q: Would a system rapidly bombarded by constituents of a thermal environment thermalize?

A: Only a very specific family of interaction Hamiltonians thermalize in rapid bombardment.

Consider a harmonic oscillator rapidly bombarded by thermal oscillators under a quadratic interaction Hamiltonian,

$$\hat{\mathcal{H}}_{SA} = \begin{pmatrix} \hat{x}_{S} & \hat{p}_{S} \end{pmatrix} \begin{pmatrix} g_{XX} & g_{XP} \\ g_{PX} & g_{PP} \end{pmatrix} \begin{pmatrix} \hat{x}_{A} \\ \hat{p}_{A} \end{pmatrix}$$
$$= \hat{\boldsymbol{X}}_{S}^{T} G \hat{\boldsymbol{X}}_{A}$$

Which G will take drive the system to a thermal state?

Q: Would a system rapidly bombarded by constituents of a thermal environment thermalize?

A: Only a very specific family of interaction Hamiltonians thermalize in rapid bombardment.

Consider a harmonic oscillator rapidly bombarded by thermal oscillators under a quadratic interaction Hamiltonian,

$$\hat{H}_{SA} = \begin{pmatrix} \hat{x}_{S} & \hat{p}_{S} \end{pmatrix} \begin{pmatrix} g_{XX} & g_{XP} \\ g_{PX} & g_{PP} \end{pmatrix} \begin{pmatrix} \hat{x}_{A} \\ \hat{p}_{A} \end{pmatrix}$$
$$= \hat{\boldsymbol{X}}_{S}^{T} G \hat{\boldsymbol{X}}_{A}$$

Which G will take drive the system to a thermal state? When will this thermal state be at the same temperature as the environment, $T_S = T_E$?

Themalization Conditions

If $det(G) \leq 0$, then the system will become "unboundedly noisy".

$$G = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \longrightarrow \hat{H}_{\mathsf{S}\mathsf{A}} = \hat{x}_{\mathsf{S}} \otimes \hat{x}_{\mathsf{A}} - \hat{p}_{\mathsf{S}} \otimes \hat{p}_{\mathsf{A}}$$

If $det(G) \leq 0$, then the system will become "unboundedly noisy".

$$G = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \longrightarrow \hat{H}_{\mathsf{S}\mathsf{A}} = \hat{x}_{\mathsf{S}} \otimes \hat{x}_{\mathsf{A}} - \hat{p}_{\mathsf{S}} \otimes \hat{p}_{\mathsf{A}}$$

If det(G) > 0, the system will thermalize to a temperature hotter than its environment,

$$T_{\mathsf{S}}(t=\infty) = rac{\mathsf{Tr}(G^{\mathsf{T}}G)}{2\,\mathsf{det}(G)}T_{\mathsf{E}} \geq T_{\mathsf{E}}.$$

If $det(G) \leq 0$, then the system will become "unboundedly noisy".

$$G = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \longrightarrow \hat{H}_{\mathsf{S}\mathsf{A}} = \hat{x}_{\mathsf{S}} \otimes \hat{x}_{\mathsf{A}} - \hat{p}_{\mathsf{S}} \otimes \hat{p}_{\mathsf{A}}$$

If det(G) > 0, the system will thermalize to a temperature hotter than its environment,

$$T_{\mathsf{S}}(t=\infty) = rac{\mathsf{Tr}(G^{\intercal}G)}{2\det(G)}T_{\mathsf{E}} \geq T_{\mathsf{E}}.$$

This inequality is saturated if and only if

$$G=g_1egin{pmatrix}+1&0\0&+1\end{pmatrix}+g_2egin{pmatrix}0&+1\-1&0\end{pmatrix}$$

 $\longrightarrow \hat{H}_{\mathsf{S}\mathsf{A}} = g_1 \, \left(\hat{x}_{\mathsf{S}} \otimes \hat{x}_{\mathsf{A}} + \hat{p}_{\mathsf{S}} \otimes \hat{p}_{\mathsf{A}} \right) + g_2 \, \left(\hat{x}_{\mathsf{S}} \otimes \hat{p}_{\mathsf{A}} - \hat{p}_{\mathsf{S}} \otimes \hat{x}_{\mathsf{A}} \right)$

- This formalism allows one to analytically deal with arbitrary quantum systems and couplings.
- In the limit of rapid bombardment, one finds non-trivial unitary dynamics, offering both isolation from the environment and control.
- Only sufficiently complex interactions purify through rapid bombardment.
- Interactions rarely thermalize through rapid bombardment.