#### **Electroweak Precision Measurements**



Jens Erler





#### 2017 CAP Congress — Testing Fundamental Symmetries —

Kingston, ON May 30, 2017

Advanced Series on Directions in High Energy Physics --- Vol. 14

#### **PRECISION TESTS OF THE STANDARD ELECTROWEAK MODEL**

Editor Paul Langacker



World Scientific

• Introduction:

Fundamental symmetries, standard model and beyond



- Introduction: Fundamental symmetries, standard model and beyond
- The weak mixing angle



- Introduction: Fundamental symmetries, standard model and beyond
- The weak mixing angle
- PV experiments



- Introduction: Fundamental symmetries, standard model and beyond
- The weak mixing angle
- PV experiments
- Beyond the Standard Model



- Introduction: Fundamental symmetries, standard model and beyond
- The weak mixing angle
- PV experiments
- Beyond the Standard Model
- Conclusions



Introduction: Fundamental symmetries, standard model and beyond

Quantum Lorentz transformations & translations Weinberg

- Quantum Lorentz transformations & translations Weinberg
- $\Rightarrow$  gauge invariance for m = 0 & h = ±1 (long range force)

- Quantum Lorentz transformations & translations Weinberg
  gauge invariance for m = 0 & h = ±1 (long range force)
- $\Rightarrow$  equivalence principle for m = 0 & h = ±2

- Quantum Lorentz transformations & translations Weinberg
- $\Rightarrow$  gauge invariance for m = 0 & h = ±1 (long range force)
- $\Rightarrow$  equivalence principle for m = 0 & h = ±2
- → local supersymmetry for  $m = 0 \& h = \pm 3/2$

- Quantum Lorentz transformations & translations Weinberg
- $\Rightarrow$  gauge invariance for m = 0 & h = ±1 (long range force)
- $\Rightarrow$  equivalence principle for m = 0 & h = ±2
- $\Rightarrow$  local supersymmetry for m = 0 & h =  $\pm 3/2$
- $\Rightarrow$  chiral symmetry for m = 0 & h = ±1/2

- Quantum Lorentz transformations & translations Weinberg
- $\Rightarrow$  gauge invariance for m = 0 & h = ±1 (long range force)
- $\Rightarrow$  equivalence principle for m = 0 & h = ±2
- $\Rightarrow$  local supersymmetry for m = 0 & h =  $\pm 3/2$
- $\Rightarrow$  chiral symmetry for m = 0 & h = ±1/2
- ➡ CPT symmetry

- Quantum Lorentz transformations & translations Weinberg
- $\Rightarrow$  gauge invariance for m = 0 & h = ±1 (long range force)
- $\Rightarrow$  equivalence principle for m = 0 & h = ±2
- $\Rightarrow$  local supersymmetry for m = 0 & h =  $\pm 3/2$
- $\Rightarrow$  chiral symmetry for m = 0 & h = ±1/2
- ➡ CPT symmetry
- no analog for  $h = 0 \Rightarrow$  hierarchy problem

• P and CP for QED and pQCD by construction

- P and CP for QED and pQCD by construction
- P violation through chiral fermion representation

- P and CP for QED and pQCD by construction
- P violation through chiral fermion representation
- CP violation due to third chiral fermion generation

- P and CP for QED and pQCD by construction
- P violation through chiral fermion representation
- CP violation due to third chiral fermion generation
- P and T (CP) violation also through  $\theta_{QCD} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\rho\sigma}$

- P and CP for QED and pQCD by construction
- P violation through chiral fermion representation
- CP violation due to third chiral fermion generation
- P and T (CP) violation also through  $\theta_{QCD} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\rho\sigma}$
- → P a precision tool to study weak interaction (later)

- P and CP for QED and pQCD by construction
- P violation through chiral fermion representation
- CP violation due to third chiral fermion generation
- P and T (CP) violation also through  $\theta_{QCD} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\rho\sigma}$
- P a precision tool to study weak interaction (later)
- ➡ CP a possible tool to discover new physics (EDMs)

- P and CP for QED and pQCD by construction
- P violation through chiral fermion representation
- CP violation due to third chiral fermion generation
- P and T (CP) violation also through  $\theta_{QCD} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\rho\sigma}$
- P a precision tool to study weak interaction (later)
- $\rightarrow$  CP a possible tool to discover new physics (EDMs)
- CPT a tool to access Planck scale physics (tomorrow)

• Baryon number: p decay, n- $\overline{n}$  oscillations ( $\Delta B = 2$ )

- Baryon number: p decay, n- $\overline{n}$  oscillations ( $\Delta B = 2$ )
- Lepton number:  $0\nu\beta\beta$ -decay,  $\mu^-Ti \rightarrow e^+Ca$ ,  $K^+ \rightarrow \pi^-\mu^+e^+$

- Baryon number: p decay, n- $\overline{n}$  oscillations ( $\Delta B = 2$ )
- Lepton number:  $0\nu\beta\beta$ -decay,  $\mu^-Ti \rightarrow e^+Ca$ ,  $K^+ \rightarrow \pi^-\mu^+e^+$
- Charged lepton flavor #:  $\mu^- \rightarrow e^-(\gamma), \tau \rightarrow 3\mu, H(Z) \rightarrow \mu e$

- Baryon number: p decay, n- $\overline{n}$  oscillations ( $\Delta B = 2$ )
- Lepton number:  $0\nu\beta\beta$ -decay,  $\mu^-Ti \rightarrow e^+Ca$ ,  $K^+ \rightarrow \pi^-\mu^+e^+$
- Charged lepton flavor #:  $\mu^- \rightarrow e^-(\gamma), \tau \rightarrow 3\mu, H(Z) \rightarrow \mu e$
- Lepton universality:  $B \rightarrow K\mu\mu < B \rightarrow Kee @ 2.6\sigma$  (LHCb)

- Baryon number: p decay, n- $\overline{n}$  oscillations ( $\Delta B = 2$ )
- Lepton number:  $0\nu\beta\beta$ -decay,  $\mu^-Ti \rightarrow e^+Ca$ ,  $K^+ \rightarrow \pi^-\mu^+e^+$
- Charged lepton flavor #:  $\mu^- \rightarrow e^-(\gamma), \tau \rightarrow 3\mu, H(Z) \rightarrow \mu e$
- Lepton universality:  $B \rightarrow K \mu \mu < B \rightarrow K ee @ 2.6\sigma (LHCb)$
- Flavor changing neutral currents:  $b \rightarrow s\gamma$ ,  $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- Baryon number: p decay, n- $\overline{n}$  oscillations ( $\Delta B = 2$ )
- Lepton number:  $0\nu\beta\beta$ -decay,  $\mu^-Ti \rightarrow e^+Ca$ ,  $K^+ \rightarrow \pi^-\mu^+e^+$
- Charged lepton flavor #:  $\mu^- \rightarrow e^-(\gamma), \tau \rightarrow 3\mu, H(Z) \rightarrow \mu e$
- Lepton universality:  $B \rightarrow K \mu \mu < B \rightarrow K ee @ 2.6\sigma (LHCb)$
- Flavor changing neutral currents:  $b \rightarrow s\gamma$ ,  $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- Flavor changing charged currents:  $B \rightarrow D \tau v$ (3.9 $\sigma$  high @ BaBar, Belle, LHCb)

# The weak mixing angle $(sin^2\theta_W)$

## The weak mixing angle $(\sin^2\theta_W)$

- mixing of  $SU(2)_L \times U(1)_Y$
- $W^{\pm} = (W^{\dagger} \mp i W^2) / \sqrt{2}$
- $Z^0 = \cos\theta_W W^3 \sin\theta_W B$

$$A = \sin\theta_{W}W^{3} + \cos\theta_{W}B$$



- $M_W = \frac{1}{2} g v = \cos\theta_W M_Z$
- $\sin^2\theta_W = g'^2/(g^2 + g'^2) = I M_W^2/M_Z^2$  (tree level)

#### Running weak mixing angle

results and prospects



#### Running weak mixing angle

results and prospects






 $\begin{array}{c|c} e_{L,R}^{-} & e_{L,R}^{-} \\ & & & \\ & & & \\ & & & \\ f & & & f \end{array}$ 



atomic parity violation (most precise: Boulder & Paris)



- atomic parity violation (most precise: Boulder & Paris)
- polarized deep inelastic scattering (ēDIS) (SLAC-E122, PVDIS, SoLID)



- atomic parity violation (most precise: Boulder & Paris)
- polarized deep inelastic scattering (ēDIS) (SLAC-E122, PVDIS, SoLID)
- polarized Møller scattering (SLAC-E158 & MOLLER)



- atomic parity violation (most precise: Boulder & Paris)
- polarized deep inelastic scattering (ēDIS) (SLAC-E122, PVDIS, SoLID)
- polarized Møller scattering (SLAC-EI58 & MOLLER)
- polarized elastic ēp (ēC?) scattering (Qweak & Mainz-P2)



- atomic parity violation (most precise: Boulder & Paris)
- polarized deep inelastic scattering (ēDIS) (SLAC-E122, PVDIS, SoLID)
- polarized Møller scattering (SLAC-EI58 & MOLLER)
- polarized elastic ēp (ēC?) scattering (Qweak & Mainz-P2)
- PV in isotope chains (Mainz & KVI Groningen)



- atomic parity violation (most precise: Boulder & Paris)
- polarized deep inelastic scattering (ēDIS) (SLAC-E122, PVDIS, SoLID)
- polarized Møller scattering (SLAC-EI58 & MOLLER)
- polarized elastic ēp (ēC?) scattering (Qweak & Mainz-P2)
- PV in isotope chains (Mainz & KVI Groningen)
- PV in single trapped Ra ions? (KVI Groningen)

#### The Low-Energy (Fermi) Limit



### Effective couplings





# Effective couplings

• NC couplings:  $g^{ef}_{AV} e \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f$   $g^{ef}_{VA} e \gamma^{\mu} e f \gamma_{\mu}\gamma^{5} f$ 

# Effective couplings



- NC couplings:  $g^{ef}_{AV} e \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f$
- $|g^{ef}_{AV}| = \frac{1}{2} 2 |Q_f| \sin^2\theta_W$

 $|g^{ef}_{VA}| = \frac{1}{2} - 2 \sin^2\theta_{W}$ 

 $g^{ef}$  VA  $e^{\gamma \mu} e^{f} \gamma_{\mu} \gamma^{5} f$ 

# $\begin{array}{c|c} e_{L,R}^{-} & e_{L,R}^{-} \\ & & & \\ & & & \\ & & & \\ f & & & f \end{array}$

# Effective couplings

- NC couplings:  $g^{ef}_{AV} e \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f$   $g^{ef}_{VA} e \gamma^{\mu} e f \gamma_{\mu}\gamma^{5} f$
- $|g^{ef}_{AV}| = \frac{1}{2} 2 |Q_f| \sin^2\theta_W$

 $|g^{ef}_{VA}| = \frac{1}{2} - 2 \sin^2\theta_{W}$ 

•  $f = e \implies |g^{ee}_{AV}| = \frac{1}{2} - 2 \sin^2 \theta_{W} \ll 1$ 

# $\begin{array}{ccc} e_{L,R}^{-} & e_{L,R}^{-} \\ & & & \\ & & & \\ & & & \\ f & & & f \end{array}$

# Effective couplings

- NC couplings:  $g^{ef}_{AV} e \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f g^{ef}_{VA} e \gamma^{\mu} e f \gamma_{\mu}\gamma^{5} f$
- $|g^{ef}_{AV}| = \frac{1}{2} 2 |Q_f| \sin^2\theta_W$

 $|g^{ef}_{VA}| = \frac{1}{2} - 2 \sin^2\theta_{W}$ 

- $f = e \implies |g^{ee}_{AV}| = \frac{1}{2} 2 \sin^2 \theta_{W} \ll 1$
- → in SM: enhanced sensitivity to  $sin^2\theta_W$ (compete with ultra-precise Z-pole determinations)

# $\begin{array}{c|c} e_{L,R}^{-} & e_{L,R}^{-} \\ & & \\ & & \\ & & \\ f & & \\ & & f \end{array}$

# Effective couplings

- NC couplings:  $g^{ef}_{AV} e \gamma^{\mu}\gamma^{5} e f \gamma_{\mu} f g^{ef}_{VA} e \gamma^{\mu} e f \gamma_{\mu}\gamma^{5} f$
- $|g^{ef}_{AV}| = \frac{1}{2} 2 |Q_f| \sin^2\theta_W$

 $|g^{ef}_{VA}| = \frac{1}{2} - 2 \sin^2\theta_{W}$ 

- $f = e \implies |g^{ee}_{AV}| = \frac{1}{2} 2 \sin^2 \theta_{W} \ll 1$
- → in SM: enhanced sensitivity to  $sin^2\theta_W$ (compete with ultra-precise Z-pole determinations)
- ➡ Beyond SM: enhanced sensitivity to ∧<sub>new</sub>



 g<sup>eq</sup><sub>AV</sub> (coherent) Stark induced-Z interference amplitude dominant (spin-independent)



- g<sup>eq</sup><sub>AV</sub> (coherent) Stark induced-Z interference amplitude dominant (spin-independent)
- Q<sub>W</sub>(<sup>133</sup>Cs) ~ 0.6% (incl. theory) c.s. Wood et al. 1997



- g<sup>eq</sup><sub>AV</sub> (coherent) Stark induced-Z interference amplitude dominant (spin-independent)
- Q<sub>W</sub>(<sup>133</sup>Cs) ~ 0.6% (incl. theory) c.s. Wood et al. 1997
- spin-dependent nuclear anapole moment through difference in hyperfine transitions



 $p \rightarrow Q \qquad x_p$ 

 deuterium target (isoscalar and simple nucleus)



- deuterium target (isoscalar and simple nucleus)
- $A_{LR} \equiv \sigma_L \sigma_R / \sigma_L + \sigma_R \propto Q^2$



- deuterium target (isoscalar and simple nucleus)
- $A_{LR} \equiv \sigma_L \sigma_R / \sigma_L + \sigma_R \propto Q^2$
- large  $Q^2 \Longrightarrow A_{LR}(d) \sim 10^{-4}$



- deuterium target (isoscalar and simple nucleus)
- $A_{LR} \equiv \sigma_L \sigma_R / \sigma_L + \sigma_R \propto Q^2$
- large  $Q^2 \Longrightarrow A_{LR}(d) \sim 10^{-4}$
- large  $y \Longrightarrow g^{eq}_{AV}$  and  $g^{eq}_{AV}$



- deuterium target (isoscalar and simple nucleus)
- $A_{LR} \equiv \sigma_L \sigma_R / \sigma_L + \sigma_R \propto Q^2$
- large  $Q^2 \Longrightarrow A_{LR}(d) \sim 10^{-4}$
- large  $y \Longrightarrow g^{eq}_{AV}$  and  $g^{eq}_{AV}$
- $Q_q$  weighted ( $\gamma$ -Z interference)



•  $A_{LR} \sim 3 \times |0^{-8}|$ 



- $A_{LR} \sim 3 \times 10^{-8}$
- purely leptonic



- $A_{LR} \sim 3 \times 10^{-8}$
- purely leptonic
- $\rightarrow$  very clean theoretically



- $A_{LR} \sim 3 \times 10^{-8}$
- purely leptonic
- $\rightarrow$  very clean theoretically
- → ultra-high precision



- $A_{LR} \sim 3 \times 10^{-8}$
- purely leptonic
- $\rightarrow$  very clean theoretically
- → ultra-high precision
- need at least one 2-loop electroweak calculation S. Barkanova & A. Aleksejevs (Memorial University of Newfoundland)





•  $A_{LR} \propto Q_W(p) + Q^2 B(Q^2, \theta)$ 



- $A_{LR} \propto Q_W(p) + Q^2 B(Q^2, \theta)$
- **Qweak**:  $Q^2 = 0.025 \text{ GeV}^2$



- $A_{LR} \propto Q_W(p) + Q^2 B(Q^2, \theta)$
- **Qweak:**  $Q^2 = 0.025 \text{ GeV}^2$ 
  - extrapolation to  $Q^2 = 0$



- $A_{LR} \propto Q_W(p) + Q^2 B(Q^2, \theta)$
- **Qweak:**  $Q^2 = 0.025 \text{ GeV}^2$ 
  - extrapolation to  $Q^2 = 0$
  - large γ-Z box Gorchtein, Horowitz, Ramsey-Musolf; Rislow, Carlson; Hall, Blunden, Melnitchouk, Thomas, Young


### Polarized elastic scattering

- $A_{LR} \propto Q_W(p) + Q^2 B(Q^2, \theta)$
- Qweak:  $Q^2 = 0.025 \text{ GeV}^2$ 
  - extrapolation to  $Q^2 = 0$
  - <sup>1</sup>°0.1' V<sup>d</sup> large  $\gamma$ -Z box Gorchtein, 0.2 0.3 0.4 0.5 0.0 0.1  $Q^2 [\text{GeV/c}]^2$ Horowitz, Ramsey-Musolf; **Rislow, Carlson; Hall, Blunden, Melnitchouk, Thomas, Young**

This Experiment

HAPPEX

SAMPLE

→ SM (prediction)

PVA4

G0

6

Ш

θ,

 $B(O^2)$ 

 $Q_{W}^{p} + Q^{2}$ 

0.4

0.

0.2

Data Rotated to the Forward-Angle Limit



0.6

### Polarized elastic scattering

- $A_{LR} \propto Q_W(p) + Q^2 B(Q^2, \theta)$
- **Qweak:**  $Q^2 = 0.025 \text{ GeV}^2$ 
  - extrapolation to  $Q^2 = 0$ ightarrow
  - Ч° 0.1<sup>г</sup> large  $\gamma$ -Z box Gorchtein, ightarrow0.2 0.3 0.5 0.0 0.10.4 $Q^2 [\text{GeV/c}]^2$ Horowitz, Ramsey-Musolf; **Rislow, Carlson; Hall, Blunden, Melnitchouk, Thomas, Young**

This Experiment

HAPPEX

SAMPLE

→ SM (prediction)

PVA4 G0

6

Ш

 $Q_{W}^{p} + Q^{2} B(Q^{2}, \theta)$ 

0.4

0.

0.2

Data Rotated to the Forward-Angle Limit

- $P2: Q^2 = 0.0045 \text{ GeV}^2 (A_{LR} \sim 10^{-8})$ 
  - γ-Z box correction (error) factor of 8 (5) smaller

0.6

## Beyond the Standard Model

## New physics discrimination



### PV (axial)-electron (vector)-quark couplings







## Compositeness Scales

 $[2 g^{eu} - g^{ed}]_{AV}$ 





# Summary

|                                           | precision | $sin^2\theta_W$ | $\Lambda_{new}$ |
|-------------------------------------------|-----------|-----------------|-----------------|
| APV Cs-133                                | 0.58 %    | 0.0019          | 32.3 TeV        |
| E158                                      | 14 %      | 0.0013          | 17.0 TeV        |
| Qweak I                                   | 19 %      | 0.0030          | 17.0 TeV        |
| PVDIS                                     | 4.5 %     | 0.0051          | 7.6 TeV         |
| Qweak final                               | 4.5 %     | 0.0008          | 33 TeV          |
| SoLID                                     | 0.6 %     | 0.00057         | 22 TeV          |
| MOLLER                                    | 2.3 %     | 0.00026         | 39 TeV          |
| <b>P2</b>                                 | 2.0 %     | 0.00036         | 49 TeV          |
| PVES <sup>12</sup> C                      | 0.3 %     | 0.0007          | 49 TeV          |
| APV <sup>225</sup> Ra                     | 0.5 %     | 0.0018          | 34 TeV          |
| APV <sup>213</sup> Ra / <sup>225</sup> Ra | 0.1 %     | 0.0037          | I6TeV           |

#### **Recent Reviews**

Krishna Kumar, Sonny Mantry, William Marciano and Paul Souder Annu. Rev. Nucl. Part. Sci. 63 (2013) 237–67

> Jens Erler and Shufang Su Prog. Part. Nucl. Phys. 71 (2013) 119–149

> > Jens Erler and Ayres Freitas Particle Data Group (2014)

Jens Erler, Charles Horowitz, Sonny Mantry and Paul Souder Annu. Rev. Nucl. Part. Sci. (2014)