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Introduction

strong coupling → can’t use perturbation theory

different approaches (for example):

• lattice calculations
→ continuum and infinite volume limits

• continuum methods
- Schwinger-Dyson equations
- n-particle irreducible (npi) effective theories
- renormalization group (RG)
→ truncation

my work: npi using a renormalization group approach

I will discuss mostly symmetric scalar ϕ4 theory
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Introduction to npi

2pi for scalar theories:
generating functional with local and bi-local sources

Z [J,B] = e iW [J,B] =

∫
Dϕe i(S[ϕ]+Jiϕi+

1
2
ϕiBijϕj )

short-hand notation:∫
dx

∫
dy ϕ(x)B(x , y)ϕ(y)→ ϕiBijϕj → Bϕ2
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Legendre transform:

Γ[φ,G ] = W [J,B]− Jiφi −
1

2
Bijφiφj

= Scl[φ] +
i

2
Tr lnG−1 +

i

2
TrG−1

0 (G − G0) + Γ2[φ,G ]

Γ[φ,G ] is a functional of the 1- and 2-point functions

φ and G determined self-consistently from equations of motion

variational principle (in the absence of sources)

δΓ

δφ
=
δΓ

δG
= 0
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compare to Γ[φ] = 1pi effective action:

• Γ[φ,G ] depends on the self consistent propagator

→ truncated Γ[φ,G ] includes an infinite resummation of diagrams

→ non-perturbative

• Γ[φ,G ] is 2pi - no double counting

Φ

Σ = 2δΦδG

2pr− not included

++ + · · ·
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npi effective action

npi Γ is a functional of n-point functions

3pi Γ[φ,G ,U], 4pi Γ[φ,G ,U,V ] · · ·
n-point functions determined self-consistently from the eom’s

⇒ hierarchy of coupled equations

I no exact solution method is available

I approximation → truncate the effective action
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4 loop 2pi effective action

Φ = Φno·int + Φint (Φ = iΓ)

Φno·int = −1

2
φG−1

no·intφ−
1

2
Tr ln G−1 − 1

2
TrG−1

no·intG

Φint 4-loop 2pi (symmetric)

+1
8 + 1

8 + 1
48 + 1

24 + 1
48−1

2
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Npi renormalization – 4 dimensions

4-loop 2pi 4-kernel Λ defined as Λ = 4 δ
2Φint

δG2

∣∣∣∣ φ=0
G=G̃

+1
2(2) +1

2(4) +1
4(2) +1

2(4)+Λ =

the 2-loop diagrams contain nested 1-loop subdivergences
→ two 1-loop counter-terms must cancel two different 1-loop boxes

⇒ can see there is no one δλ1 that works
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Resolution for 2pi

introduce 2 ct’s . . . sounds bad . . . BUT

1) they both come from the action

2) at L→∞ loops they are equal

H. van Hees, J. Knoll, Phys. Rev. D65, 025010 (2002);
J-P Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A736, 149 (2004);

J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Annals Phys. 320, 344 (2005).

must develop another method to renormalize at higher orders
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Numerical Results - arXiv:1603.02085
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Renormalization group method

add to the action a non-local regulator term ∆Sκ[ϕ] = −1
2 Rκϕ

2

κ2

κ
Q

R̂κ(Q)
Rκ =

Q2

eQ2/κ2 − 1

Rκ(Q) ∼ κ2 for Q � κ

fluctuations Q � κ suppressed

Rκ(Q)→ 0 for Q ≥ κ

fluctuations Q � κ unaffected

Carrington, May 31, 2017, CAP Congress (slide 11 of 17)



Introduction
4 loop 2pi symmetric theory

Counterterm renormalization
Renormalization group and npi

Conclusions

Method

n-point functions depend on κ

(1) choose an uv scale κ = µ (defn of bare parameters)

theory is classical at this scale (all fluctuations suppressed)

→ n-point functions are known functions of the bare parameters

(2) derive a hierarchy of differential ‘flow’ equations

→ relate κ dependent n-point functions and their derivatives wrt κ

(3) solve flow equations starting from bc’s at κ = µ

→ obtain the n-point fcns at κ = 0 (the quantum solutions)
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Hierarchy of flow equations

definitions of kernels: Φ
(m)
int·κ = 2m

δmΦint

δGm

∣∣∣∣G=Gκ
φ=o

flow equations

∂κΦ
(m)
int·κ

∣∣∣∣G=Gκ
φ=o

=
1

2

∫
dQ ∂κ (Rκ + Σκ) G 2

κ(Q) Φ
(m+1)
int·κ (Q, )

∣∣∣∣G=Gκ
φ=o

⇒ infinite hierarchy of coupled flow eqns for the n-point kernels

BUT: the hierarchy truncates when the action is truncated
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Preliminary Results – 4-loop 2pi
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Conclusions

the 4 loop 2pi calculation can be done in two ways:

i) counterterm renormalization

ii) functional renormalization group regulator

we’ve shown that the two methods give the same answer

- verifies the RG approach works
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significance:

• CT calculation:
requires the introduction of two counterterms
can’t be generalized to higher order theories

• RG method:
all divergences are absorbed into one bare coupling which is
introduced at the level of the lagrangian
can be generalized to higher order nPI
we’ve derived the equations for the 4pi theory
- and shown that the consistency requirements are satisfied

numerical calculations are in progress
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