Energy response and position reconstruction at DEAP-3600 CAP 2017, Kingston

Stefanie Langrock on behalf of the DEAP-3600 collaboration stefanie.langrock@snolab.ca

Laurentian University

01/06/2017

CAP 2017, Kingston

01/06/2017 1 / 15

The experiment:

- Pixelated detector
- Detection of WIMPs via nuclear recoils
- Designed for 3600 kg LAr
- 255 PMTs to measure energy and position of events in the LAr
- AV coated with wavelength shifter TPB
- Located at SNOLAB
- Taking physics data since 2016
- Target sensitivity to WIMP-nucleon cross section 10⁻⁴⁶ cm² at WIMP masses of 100 GeV

The experiment:

- Pixelated detector
- Detection of WIMPs via nuclear recoils
- Designed for 3600 kg LAr
- 255 PMTs to measure energy and position of events in the LAr
- AV coated with wavelength shifter TPB
- Located at SNOLAB
- Taking physics data since 2016
- Target sensitivity to WIMP-nucleon cross section 10⁻⁴⁶ cm² at WIMP masses of 100 GeV

Discriminating the ³⁹Ar signal using PSD:

DEAP-1 calibration data Astroparticle Physics 85 (2016) 1-23

- Ar Dimer states with different life times:
 - Singlet au 6 ns -predominantly nuclear recoils
 - Triplet $\tau \; 1500 \, \mathrm{ns}$ -predominantly electromagnetic events

• ³⁹Ar:

- β^- emitter with $Q = 565 \, \text{keV}$
- From cosmic ray interaction on ${\rm ^{40}Ar}$
- Isotropically distributed in LAr

 \rightarrow Percentage of light signal in prompt light as indication of singlet state population

Single Photon counting:

Ideal measurement: single photon counting correcting for PMT effects De-excitation photons (128 nm) \rightarrow TPB (420 nm) \rightarrow Photoelectron cascades in PMTs

 Translation of PMT pulses to number of photoelectrons observed using charge division (qPE)

Correction of different effects necessary:

Effects to correct on PE estimator:

- PMT effects:
 - After-pulse (AP): caused by back-scatter of electrons on PMT dynodes
 - Saturation of PMTs
 - Dark noise
- Other effects:
 - Pile-up of two or more events in same event window

arXiv:1705.10183

Understanding the energy response using ³⁹Ar:

• Light yield uniformly scaled to match the simulation to data

Cool down phase, before fill

Gas phase calibration with ³⁹Ar

Understanding the energy response using ³⁹Ar:

Preliminary - Fit to Simulated ³⁹Ar Spectrum

• Light yield uniformly scaled to match the simulation to data

Simulation, after finishing fill

LAr phase calibration with ³⁹Ar

External ²²Na source allows tagged gamma rays:

External ²²Na source allows tagged gamma rays:

Photoconversion of incoming γ on the acrylic:

- at few tens of keV photoelectric effect dominant effect over Rayleigh and Compton scattering
- Once gammas are degraded to a few tens of keV, they travel very short distance before being photoabsorbed

Photoconversion of incoming γ on the acrylic:

- at few tens of keV photoelectric effect dominant effect over Rayleigh and Compton scattering
- Once gammas are degraded to a few tens of keV, they travel very short distance before being photoabsorbed

Fit of the low energy peak in LAr data:

- Peak of photoconversion at AV surface from gammas
- Also observed in simulation
- Fit with uniformly scaled light yield to match the simulation to data

4

Comparing ³⁹Ar and low energy ²²Na:

Position reconstruction

Measurement of event position:

Two main approaches possible:

- Time-based
- Charge-based

Measurement of event position:

Two main approaches possible:

Time-based

- Finite speed of light
- PMT hit time proportional to source distace from PMT
- Absolute vertex resolution uniform across volume
- Dependent on scintillator response times, PMT transit time, DAQ quality

Measurement of event position:

Two main approaches possible:

Charge-based

- Charge patterns of the PMTs
- Point-like source: closer PMTs expected to have more photon hits and charges
- Pattern detector dependent
- Vertex resolution improved towards the edge of the detector

Position reconstruction •••••••

Measurement of event position:

Two main approaches possible:

- Time-based
- Charge-based

DEAP-3600 small enough for charge-based vertex reconstruction to deliver the better position resolution

		< □ ▶		▶ ▲ 문 ▶	-	9
S. Langrock	CAP 2017, Kingston		01/06/2017	11 / 15		

Work in progress!

S. Langrock	CAP 2017, Kingston	01/06/2017 12 / 15	

Fiducialisation and de-biasing using ³⁹Ar:

- Isotropic ³⁹Ar distribution
- Map true radius to reconstructed radius
- Account for energy dependence
- Determine fiducial mass by determining ³⁹Ar rate

ъ

Position reconstruction

Fiducialisation and de-biasing using ³⁹Ar:

- Isotropic ³⁹Ar distribution
- Map true radius to reconstructed radius
- Account for energy dependence
- Determine fiducial mass by determining ³⁹Ar rate

Position reconstruction

²²Na studies to understand surface backgrounds:

Work in progress

CAP 2017, Kingston

Position reconstruction

The Deap-3600 collaboration:

around 60 collaborators in Canada, the UK and Mexico

The speakers operational support was provided by NSERC

CAP 2017, Kingston

01/06/2017 15 /

Back Up

S. Langrock

CAP 2017, Kingston

01/06/2017 15 / 15

æ

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

DEAP-3600 calibration program:

Calibration Source	Calibration goal	Notes
Laserball	Optical (PMT) calibration	vacuum runs only
LED Light Injection	Optical (PMT) calibration, monitoring	used in all run phases
²² Na	Energy and position reconstruction, gamma response	Argon phase
AmBe	Energy calibration, gamma and neutron response	Argon phase
³⁹ Ar	Intrinsic, energy and position reconstruction	Argon phase

- Argon phase: gas phase (GAr), partial fill phase, liquid argon phase (LAr)
- LED Light Injection system with fibres installed on PMTs
- External calibration sources: ²²Na (1 MBq) and AmBe (74 MBq)
- Intrinsic calibration source: ³⁹Ar (expected 1.01 Bq/kg)

