Fermilab **BENERGY** Office of Science

Prospects and Challenges for the Detection of MeV-scale Dark Matter

> Alan E. Robinson CAP Congress 29 May 2017

What could be the Dark Matter?

What could be the Dark Matter?

How could DM be produced?

Axions / ALPs \leq 1 eV

Produced by spontaneous symmetry breaking in early universe

Produced by particle collisions.

🚰 Fermilab

Variations:

- WIMPs
- Dark Photon
- Assymmetric DM
- Freeze-in
- SIMP

Thermally Produced Dark Matter

Direct Detection Limits

Direct Detection Limits

Dark U(1) Sector Models

- Simplest unconstrained model at low masses
 - Heavy dark photon kinetically mixes with SM photon

DM w/ heavy A', 3 events, 1 kg-year

How to see light dark matter

Build ultra low-threshold detectors

 $E_{recoil,max} = 2(\mu v)^2/m_N$

Challenge: Detector resolution degrades with detector size.

- Build experiments that concentrate signals onto small detectors.
 - New low-threshold technologies have been developed!

Challenge: Maintaining low-backgrounds at low thresholds

Challenge: Calibrating detector energy scales at low thresholds

Ultra-low threshold experiments

- Skipper CCDs
 - Recently demonstrated by J. Tiffenberg @ FNAL
 - Single e⁻ sensitivity by repeatedly sampling the trapped charge and baseline of a CCD readout diode.

Detecting Recoils

Ionization (free electrons)

00

Scintillation (light)

Phonons (heat or sound)

10 29 May 17 Alan Robinson | Prospects and challenges for detecting MeV-scale dark matter

Detecting Recoils

~meV / quantum Phonons (heat or sound)

11 29 May 17 Alan Robinson | Prospects and challenges for detecting MeV-scale dark matter

Detecting Recoils – Ultimate sensitivities

Ionization (free electrons) ~3 eV / quantum >2 MeV DM on e⁻ >100 MeV/c2 DM on Si atom

Scintillation (light)

~10 eV / quantum

~meV / quantum Sensitivity to below Phonons 0.5 MeV/c² (heat or sound)

Phonon Detection

e.g. SuperCDMS SNOLAB

- Concentrates phonons and detects them using tungsten at its superconducting transition (Transition Edge Sensor)
- Design resolution of 5-10 eV
- Operations in 2020

Background processes

Sources of spontaneous energy deposition

- Thermal fluxuations
 - Operate at cryogenic temperatures

Background processes

Sources of spontaneous energy deposition

- Thermal fluxuations
 - Operate at cryogenic temperatures
- Radiation, penetrating photons

Background Radiation Processes from Photons

Penetrating MeV $\boldsymbol{\gamma}$ radiation

- Deposits of full photon energy
 - Photoelectric effect
 - Pair-production
- Compton scattering
 - Mitigated by ER/NR discrimination
 - Cut off below electron binding energies (~eV – keV).
- Coherent scattering
 - Changes photon direction
 - Nuclear recoil

🛠 Fermilab

Coherent Photon Scattering Background

• Well studied process responsible for x-ray diffraction.

Background processes

Sources of spontaneous energy deposition

- Thermal fluxuations
 - Operate at cryogenic temperatures
- Radiation, penetrating photons
 - Coherent photon scattering
- Microacoustic noise
- Non-thermal dark current
- Electrons accelerated over small voltages

Energy scale calibration

- Traditional method: irradiation by γ-ray or neutrons
 - Most scatters are too energetic for eV-scale.
- New methods
 - IR photons: see Muad Ghaith, at 15:30
 - Low-energy (~10 V) accelerators
 - Nuclear Thomson scattering
 - Thermal neutron capture recoils

Energy scale calibrations

Further Reading

- Dark Sectors workshop report
 - arXiv:1608.08632
- LBNL sub-eV workshop
 - indico.physics.lbl.gov/indico/event/298/
- DOE Cosmic Visions workshop
 - indico.fnal.gov/conferenceDisplay.py?confld=13702
- Many other promising low-threshold technologies. E.g.:
 - Scintillating bolometers
 - Liquid helium

Coherent photon scattering calibrations

- Coherent Photon scattering
 - Tunable edge energy with a variety of high energy photon sources:
 - 24Na, 88Y, 12C(4.4 MeV)

Cover Photo

Beauvois et al. PRB **94** 024504

FIG. 1. (color online) (a) $S(Q, \omega)$ of superfluid ⁴He measured as a function of wave vector and energy transfer, at saturated vapor pressure and temperature $T \leq 100$ mK. Con-

🛟 Fermilab