

First Physics Results from the GlueX Experiment Dr. Zisis Papandreou

CAP Congress Kingston, ON May 30, 2017

QCD predicts more types of states than just mesons & baryons

QCD predicts more types of states than just mesons & baryons

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc... Phys.Let.8 (1964) 214

QCD predicts more types of states than just mesons & baryons

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc... Phys.Let.8 (1964) 214

Can we observe explicit gluonic degrees of freedom in nature's bound states?

Hadron Spectrum

- QCD Lagrangian has quark and gluon d.o.f. → spectrum of hadrons?
- Gluon-gluon interactions give rise to states with gluonic excitations.
- Lattice QCD predicts a rich spectrum of hybrid mesons.
- A subset of these has an distinct signature:
 "exotic" J^{PC}, not possible from the simple,
 non-relativistic quark model.

Production of Hybrid Mesons

Combine the QN $J^{PC}=1^{+-},\,1^{-+}$ of the excited gluonic field with those of the quarks:

Conventional
$$J^{PC}=0^{-+},1^{+-},1^{++},1^{--},2^{-+},\dots$$
 Exotic $J^{PC}=0^{+-},1^{-+},2^{+-},\dots$

Production of Hybrid Mesons

Combine the QN $J^{PC}=1^{+-},\,1^{-+}$ of the excited gluonic field with those of the quarks:

Conventional
$$J^{PC}=0^{-+},1^{+-},1^{++},1^{--},2^{-+},...$$
 Exotic $J^{PC}=0^{+-},1^{-+},2^{+-},...$

Hybrid Searches

	Approximate	J^{PC}	Total Width	(MeV)	Relevant Decays	Final States
	Mass (MeV)		PSS	IKP		
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^\dagger,~\rho\pi^\dagger,~f_1\pi^\dagger,~a_1\eta[\eta'\pi^\dagger]$	$\omega\pi\pi^{\dagger}$, $3\pi^{\dagger}$, 5π , $\eta 3\pi^{\dagger}$, $\eta'\pi^{\dagger}$
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi,f_1\eta^\dagger,\pi(1300)\overline{\pi}$	$4\pi,\eta 4\pi,\eta \eta \pi \pi^\dagger$
η_1'	2300	1^{-+}	100 - 220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger},KK\pi^{\dagger},KK\omega^{\dagger}$
b_0	2400	0^{+-}	250 - 430	670	$\pi(1300)\pi, h_1\pi$	4π
h_0	2400	0^{+-}	60 - 260	90	$b_1\pi^{\dag},h_1\eta,K(1460)K$	$\omega\pi\pi^{\dagger},~\eta 3\pi,~KK\pi\pi$
h_0'	2500	0^{+-}	260 - 490	430	$K(1460)K,K_1(1270)K^\dagger,h_1\eta$	$KK\pi\pi^{\dagger},~\eta 3\pi$
b_2	2500	2^{+-}	10	250	$a_2\pi^\dagger,~a_1\pi,~h_1\pi$	$4\pi,\eta\pi\pi^{\dagger}$
h_2	2500	2^{+-}	10	170	$b_1\pi^\dagger,~ ho\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger}$
h_2'	2600	2+-	10 - 20	80	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K_2^*K^{\dagger}$	$KK\pi\pi^{\dagger},KK\pi^{\dagger}$

Jefferson Lab

Upgraded: 12 GeV

4th Hall: GlueX

Cost > \$310M

The Setup

\$10M *

target

barrel

calorimeter

time-of

-flight

forward calorimeter

- * Linearly polarized bremsstrahlung photon beam from CEBAF 12 GeV e
- * High statistics samples of multiparticle final states provided by large acceptance detector for both charged and neutral particles
- * Resolutions:

The Detector

Diamonds "sparkle"

JD70-100 scan 4 fit peak centroid

JD70-105 scan 1 whole crystal rocking curve beam weighted.

Excellent rocking curve widths

50 µm diamond radiators scanned at CLS

Data Taking

- •2014-2015: Beam and detector commissioning
- •Spring 2016: Detector commissioning and first physics results
- $10^7 \, \text{y/s}$ in coherent peak $8.4 < \text{Ey} < 9 \, \text{GeV}$
- Golden period: ~80 hours of beam time
- •2017-> physics program:
- $100 \text{ days } @ \sim 10^7 (10 \text{x stats})^7$
- High intensity running:
- 200 days @ ~5x10⁷ (100x stats)

Event rate 55kHz, data rate 900 MBytes/sec; 2 Pb

Data Taking

- •2014-2015: Beam and detector commissioning
- •Spring 2016: Detector commissioning and first physics results
- 10^7 y/s in coherent peak 8.4 < Ey < 9 GeV
- Golden period: ~80 hours of beam time
- •2017-> physics program:
 - $100 \text{ days } @ \sim 10^7 (10x \text{ stats})$
- High intensity running:
- 200 days @ ~5x10⁷ (100x stats)

Event rate 55kHz, data rate 900 MBytes/sec; 2 Pb

Beam Asymmetry Σ : $\gamma p \rightarrow p\pi^0$

- Low hanging fruit: asymmetries (acceptances cancel)
- Asymmetry: information on the **production mechanism**
- The production mechanism is an effective J^{PC} filter (non-exotic here)
- SLAC π^0 results from 1971
- No η results exist!

Exchange J^{PC} Σ

$$1^{--}:\omega,\rho$$
 +1

$$1^{+-}:b,h$$

Beam Asymmetry Σ : $\gamma p \rightarrow p\pi^0$

- Low hanging fruit: asymmetries (acceptances cancel)
- Asymmetry: information on the **production mechanism**
- The production mechanism is an effective J^{PC} filter (non-exotic here)
- SLAC π^0 results from 1971
- No η results exist!

Exchange J^{PC} Σ

$$1^{--}:\omega,\rho$$
 +1

$$1^{+-}:b,h$$

Beam Asymmetry Extraction

π⁰ and η Beam Asymmetries

$$\pi^0, \eta \to \gamma \gamma$$

- Data compared to Regge theory calculations
- No dip at -t = $0.5 (GeV/c)^2$
- Vector exchange dominance at this energy

Exchange
$$J^{PC}$$
 Σ $1^{--}:\omega,\rho$ +1 $1^{+-}:b,h$ -1

First GlueX publication

DOI:10.1103/PhysRevC.95.042201

At Regina: γp->pη,pη'

- World η/η' photoproduction data on Σ , Σ' beam asymmetries & cross sections is sparse or not measured at GlueX energies
- πη and πη' resonances high on list of possibly-accessible exotics/hybrids

V. Mathieu et al. arXiv:1704.07684

$$\eta \to \pi^{+}\pi^{-}\pi^{0} (23\%)$$
 $3\pi^{0} (33\%)$
 $\eta' \to \pi^{+}\pi^{-}\eta (43\%)$
 $2\pi^{0}\eta (22\%)$

Struczinski et al., 1976

6 Ey(GeV)

At Regina: γp->pη,pη'

- World η/η' photoproduction data on
 Σ, Σ' beam asymmetries & cross sections is sparse or not measured at GlueX energies
- πη and πη' resonances high on list of possibly-accessible exotics/hybrids

V. Mathieu et al. arXiv:1704.07684

At Regina: $\gamma p \rightarrow p n p n$

- World η/η' photoproduction data on Σ , Σ' beam asymmetries & cross sections is sparse or not measured at GlueX energies
- πη and πη' resonances high on list of possibly-accessible exotics/hybrids

V. Mathieu et al. arXiv:1704.07684

At Regina: $\gamma p \rightarrow p n, p n'$

- World η/η' photoproduction data on Σ , Σ' beam asymmetries & cross sections is sparse or not measured at GlueX energies
- πη and πη' resonances high on list of possibly-accessible exotics/hybrids

V. Mathieu et al. arXiv:1704.07684

At Regina: $\gamma p \rightarrow p n p n$

- World η/η' photoproduction data on
 Σ, Σ' beam asymmetries & cross sections is sparse or not measured at GlueX energies
- πη and πη' resonances high on list of possibly-accessible exotics/hybrids

V. Mathieu et al. arXiv:1704.07684

Summary & Outlook

Summary & Outlook

- ▶ Gluonic field excitation leads to a **new spectrum** of mesons. Theory (LQCD) makes detailed hybrid multiplet predictions.
- ✓ Successful commissioning and early physics analyses
- √First production run completed: $\gamma p \rightarrow (\rho, \omega, \phi)p$, $\gamma p \rightarrow (\pi^0, \eta, \eta^*)p$, etc
- Study production mechanism: beam asymmetries, cross sections, spin density matrix elements, PWA
- Comparison with previous measurements and models, plus more
- Detector upgrade for improved K/π separation 2018+
- ullet Other: Primakoff program for η decay width and π^{\pm} polarizability

Acknowledgements

LEARN MORE

- Particle Adventure
- portal.gluex.org
- www.halld.org
- www.gluex.org

Regina Team members:

T. Beattie, A. Foda, G. Huber, G. Lolos, A. Semenov, I. Semenova, A. Teymurazyan

Thank you!

Backup Slides

The Beam Line

The Beam Line

The Beam Line

Polarization

* Triplet production

$$\gamma e^- \rightarrow e^- e^+ e^-$$

* Known analyzing power

$$d\sigma \sim 1 \pm P\Sigma cos(2\phi_{e^-})$$

* Measure beam polarization independent of spectrometer

arXiv: 1703.07875

Measured Polarization

Spring 2016 $\eta \to \pi^+ \pi^- \pi^0$ Mass Spectrum

Spring 2016 $\eta' \to \pi^+ \pi^- \eta$ Mass Spectrum

n Background

Check the map

- * Already studying polarization observables for "simple" final states
- * Beginning to identify known mesons in multi-particle final states

Linear Polarization

assume that X decays into two spin-less mesons: a and b and that e is also spin-less

$$\hat{n} \equiv \hat{k} imes \hat{q}$$

m determined by polarization of photon

$$Y_{\ell}^{\pm m}(\theta, \phi) = Y_{\ell}^{\pm 1}(\theta, \phi) \propto P_{\ell}(\cos \theta)e^{\pm \phi}$$

For circularly polarized photons: m = +1 or m = -1

 $W(\theta, \phi) \propto |P_{\ell}(\cos \theta)|^2$

Linear polarization separates natural and unnatural parity

For unpolarized photons: equal mixture of m = +1 and m = -1

 $W(\theta, \phi) \propto |P_{\ell}(\cos \theta)|^2$

For x - linear polarization:
$$\Rightarrow$$
 $W(\theta,\phi) = |Y_\ell^{+1} - Y_\ell^{-1}|^2 \propto |P_\ell(\cos\theta)|^2 \sin^2\phi$

For y - linear polarization:
$$\implies W(\theta,\phi) = |Y_\ell^{+1} + Y_\ell^{-1}|^2 \propto |P_\ell(\cos\theta)|^2 \cos^2\phi$$

States of linear polarization are eigenstates of parity: access to the nature of the exchange particle.

√ Essential to isolate the production mechanism ("e") if X is known

✓ A JPC filter if "e" is known (via a kinematic cut)