New Perspectives on the Charged Pion Form Factor

CAP Congress, Kingston, ON, May 30, 2017.

The Pion has Particular Importance

- The pion is responsible for the long-range part of the nuclear force, acting as the basis for meson exchange forces, and playing a critical role as an elementary field in nuclear structure Hamiltonians.
- N____N π____N N_____N
- As the lightest meson, it must be a valence $q\bar{q}$ bound state, but understanding its structure through QCD has been exceptionally challenging.
 - e.g. Constitutent Quark Models that describe a nucleon with m_N =940 MeV as a qqq bound state, are able to describe the ρ -meson under similar assumptions, yielding a constituent quark mass of about $m_N = m_q$

$$m_Q \approx \frac{m_N}{3} \approx \frac{m_\rho}{2} \approx 350 \text{ MeV}$$

- The pion mass $m_{\pi} \approx 140$ MeV seems "too light".
- We exist because nature has supplied two light quarks and these quarks combine to form the pion, which is unnaturally light and hence very easily produced.

The Pion in perturbative QCD

At very large Q^2 , pion form factor (F_{π}) can be calculated using pQCD

$$F_{\pi}(Q^2) = \frac{4}{3}\pi\alpha_s \int_0^1 dx dy \frac{2}{3} \frac{1}{xyQ^2} \phi(x)\phi(y)$$

at asymptotically high Q^2 , the pion distribution amplitude becomes

$$\phi_{\pi}(x) \xrightarrow[Q^2 \to \infty]{} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$Q^{2}F_{\pi}(Q^{2}) \underset{Q^{2} \to \infty}{\longrightarrow} 16\pi\alpha_{s}(Q^{2})f_{\pi}^{2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_s / \partial \mu) < 0$ as $\mu \rightarrow \infty$.

 $Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . \rightarrow Can study the renormalization of α_s quark-gluon coupling, and QCD's transition between asymptotic freedom and confinement.

The Pion as a Goldstone Boson

- A remarkable feature of QCD is Dynamical Chiral Symmetry Breaking (DCSB) because it cannot be derived directly from the Lagrangian and is related to nontrivial nature of QCD vacuum.
 - Explicit symmetry breaking, which is put in "by hand" through finite quark masses, is quite different.
- DCSB is now understood to be one of the most important emergent phenomena in the Standard Model, responsible for generation of >98% baryonic mass.
- Two important consequences of DCSB:
 - 1. Valence quarks acquire a dynamical or constituent quark mass through their interactions with the QCD vacuum.
 - 2. The pion is the spin-0 boson that arises when Chiral Symmetry is broken, similar to how Higgs boson arises from Electroweak Symmetry Breaking.
- Craig Roberts (2016): "No understanding of confinement within the Standard Model is practically relevant unless it also explains the connection between confinement and DCSB, and therefore the existence and role of pions."

Amazing progress in the last few years.

- We now have a much better understanding how Dynamical Chiral Symmetry Breaking (DCSB) generates hadron mass.
- Quenched lattice-QCD data on the dressed-quark wave function were analyzed in a Bethe-Salpeter Equation framework by Bhagwat, et al.
- For the first time, the evolution of the current-quark of pQCD into constituent quark was observed as its momentum becomes smaller.
- The constituent-quark mass arises from a cloud of lowmomentum gluons attaching themselves to the current quark.
- This is DCSB: an essentially non-perturbative effect that generates a quark *mass from nothing*: namely, it occurs even in the chiral (m=0) limit.

Implications for Pion Structure

There has been an ongoing argument for the last ~30 years on the proper normalization of α_s far from the Z^0 pole.

(e.g. Brodsky et al., PRD 67 (2003) 055008; Isgur, Llewellyn-Smith PRL 52 (1984) 1080; etc.)

Recent theoretical advances finally shed light on this controversy.

New Lattice QCD at Higher Q²

- Lattice QCD calculations traditionally have difficulty predicting hadron structure at high-momentum transfer.
- Form factors drop rapidly with Q², so one is attempting to extract a much weaker signal from data-sets with finite statistics.
- QCDSF/UKQCD/CSSM Collab. address with new technique relating matrix elements to energy shifts.
- Simulate single set of *u*,*d*,*s* gauge configurations corresponding to $m_{\pi} \approx 470$ MeV.
- Confident future LQCD will provide insight into transition of perturbative to non-perturbative QCD.
- HPQCD Collab. study pseudoscalar η_s meson made of valence *s* quarks accurately tuned on full QCD ensembles of gluon field configurations.
- Qualitatively similar to pion since $m_s < \Lambda_{QCD}$, but numerically much faster.
- F_{π} result flat for 2< Q^2 <6 GeV², far above asymptotic QCD value (similar to slide #6).
- Confident future LQCD calcs will provide rigorous comparison with high Q^2 experiment.

AdS/QCD

 A remarkable breakthrough in the last decade is the discovery by Brodsky and de Teramond of a higher dimensional gravity dual to semi-classical light-front QCD.

- The goal of holographic QCD models is to find a weakly coupled theory in 5D anti-de Sitter (ADS) space-time for which the dual strongly coupled theory is as close to QCD as possible.
- Allows analytic calculations of hadronic properties to be performed in the non-perturbative regime.
- In these models, confinement is simulated by imposing boundary conditions on the extra 5^{th} dimension *z*.
- Complications arise when one introduces spontaneous and explicit Chiral Symmetry Breaking effects.
- Until now, it has been not possible to treat the pion on a consistent basis with other hadrons, due to the fact that it is "too light", as discussed on slide #2.

New AdS/QCD Calculation

- Ahmady, Chistie and Sandapen consider the pion light-front wavefunction, incorporating both the physics of confinement and Chiral Symmetry Breaking, in the AdS/QCD framework.
- Take into account quark dynamical spin effects in the holographic pion wavefunction (i.e. momentum-dependent helicities).
- Now able to treat the pion with same parameters as for other hadrons.
- Obtain a broad, flat pion PDA very similar to Twist-2,3 calcs on slide #6.
- Good agreement with expt. for f_{π} , $\sqrt{\langle r_{\pi}^2 \rangle}$ and F_{π} at low Q^2 .
- Additional work needed for $Q^2 > 2 \text{ GeV}^2$.
- Supports the idea of the emergence of a universal, fundamental AdS/QCD scale.

Adhmady, Chistie, Sandapen, PRD 95 (2017) 074008.

Measurement of F_{π} via Electroproduction

Above Q²>0.3 GeV², F_{π} is measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_{π}^{2} appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique:

- 1. Isolating σ_L experimentally challenging.
- 2. The F_{π} values are in principle dependent upon the model used, but this dependence is expected to be reduced at sufficiently small -t.

- L-T separation required to separate σ_L from σ_T .
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole.

F_{π} Extraction from JLab data

- Model is required to extract F_{π} from σ_L
- JLab F_π experiments used the VGL Regge model

[Vanderhaeghen, Guidal, Laget, PRC 57, 1454 (1998)]

- Propagator replaced by π and ρ Regge trajectories
- Most parameters fixed by photoproduction data
- -2 free parameters: Λ_{π} , Λ_{ρ}
- At small –*t*, σ_L only sensitive to

Model of: T.K. Choi, K.J. Kong, B.G. Yu [arXiv: 1508.00969] **may allow a second way to extract** F_{π} from σ_{L} data.

Newly Upgraded JLab Hall C

SHMS:

- 11 GeV/c Spectrometer
- Partner of existing 7 GeV/c HMS

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- Hodoscopes
- Cerenkovs
- Calorimeter
- All derived from existing HMS/SOS detector designs

Well-Shielded Detector Enclosure

Rigid Support Structure

- Rapid & Remote Rotation
- Provides Pointing
- Accuracy &
- Reproducibility
- demonstrated in HMS

U.S. DEPARTMENT OF

Office of

Science

JLab Current and Projected Data

Upgraded JLab will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

New overlap points at $Q^2=1.6,2.45$ will be closer to pole to constrain $-t_{min}$ dependence.

New low Q^2 point will provide best comparison of the electroproduction extraction of F_{π} vs. elastic $\pi + e$ data.

> E12-06-101 Spokespersons: G.M. Huber, D. Gaskell

The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV². Requires additional measurements (not yet approved) to verify π -pole dominance in σ_{L} .

Electron-Ion Collider (Very Tentative)

Assumptions:

- 5(*e*⁻) x 100(*p*).
- Integrated L=20 fb⁻¹/yr.
- Identification of exclusive p(e,e'π⁺n) events.
- 10% exp. syst. unc.
- $R = \sigma_L / \sigma_T$ from VR model, and π pole dominance at small -t confirmed in ²H π^- / π^+ ratios.
- 100% syst. unc. in model subtraction to isolate σ_L.

Much more study needed to confirm assumptions.

Summary

 As I have illustrated, we are about to enter a revolutionary new period in our understanding of the charged pion form factor.

Theoretical advances on many fronts:

- Links between Dynamical Chiral Symmetry Breaking (DCSB), quark confinement, and the generation of hadron mass are becoming clearer.
- Lattice QCD proof-of-principle first F_{π} predictions for $Q^2>3$ GeV^{2.}
- AdS/QCD allowing analytic calculations in the non-perturbative regime.

New experimental capabilities:

- Upgraded JLab Hall C will allow for the first time (since pioneering measurements at Cornel in 1970's) be able to acquire high quality data needed to test these theoretical developments with authority.
- Longer term, an EIC may allow access to the hard QCD regime.
- In coming years, we expect to shed substantive light on the properties and role of pions. Stay tuned!