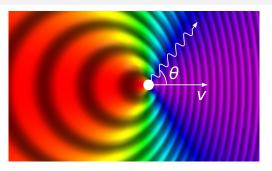
Implementation of the Doppler Shift Attenuation Method using TIP/TIGRESS at TRIUMF

Jonathan Williams

PhD Candidate
Simon Fraser University - Department of Chemistry

CAP Congress 2017 May 29, 2017

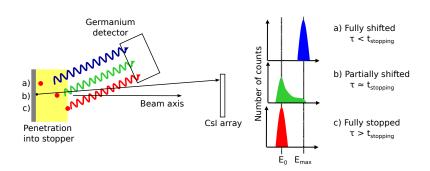

Gamma-ray spectroscopy and nuclear structure

- Study of electromagnetic transition rates and energies via gamma-ray spectroscopy can yield information on nuclear structure.
- Eg. B(E2) measurements to determine the deformation in a nuclear charge distribution β :

$$\frac{1}{\tau E_{\gamma}^5} \propto B(E2) \propto \beta^2$$

- E_{γ} can be measured with high precision via gamma-ray spectroscopy.
- au measurable via RDM (au > 1 ps), DSAM (au < 1 ps).

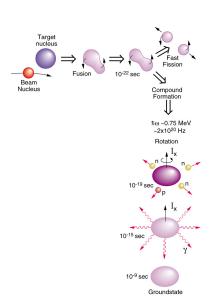
Doppler Shift Attenuation Method (DSAM)



$$E_{\gamma} = E_0 \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta}, \quad \beta = \frac{v}{c}$$

Detected gamma-ray energy depends on the speed of the residual nucleus at decay time.

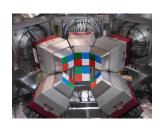
• Can infer the lifetime of the state being measured from the gamma-ray energy distribution.


Doppler Shift Attenuation Method (DSAM)

- Nucleus of interest slows and stops in a thick target backing.
- Observe lineshape depending on the speed distribution of the residual at time of gamma-ray emission.

Fusion-evaporation reaction mechanism

- A compound system forms with large angular momentum and recoil speed.
- The system decays first by the emission of particles (forming species of interest).
- Residual nucleus (species of interest) decays by gamma-ray emission.

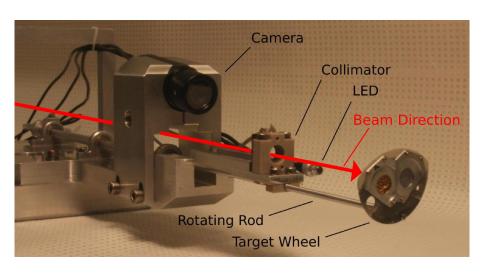


TIP experimental setup

Gamma ray detection: TIGRESS (all 16 clovers usable)

Charged particle detection: Csl(Tl) detectors, 2 configurations:

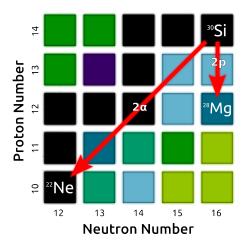
- 24 element wall (pictured)
- Ball with $\sim 3\pi$ spherical coverage (under construction).


+ the TIP DSAM target device.

TIP chamber in TIGRESS

P. Voss et al. Nucl. Inst. Meth. A 746 87 (2014)

TIP DSAM configuration

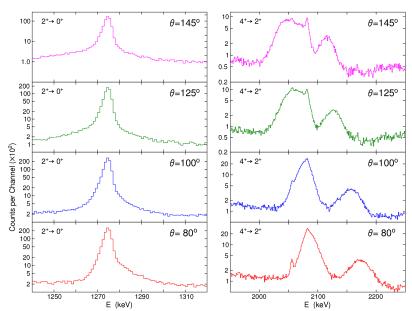

P. Voss et al. Nucl. Inst. Meth. A 746 87 (2014)

TIP target position

P. Voss et al. Nucl. Inst. Meth. A 746 87 (2014)

TIP/TIGRESS Commissioning experiment

TIGRESS/TIP @ TRIUMF:

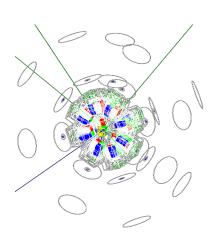

- ¹⁸O beam (48 MeV)
- nat. C target (0.433 mg/cm²),
 Au backing (28.79 mg/cm²)¹
- Csl(Tl) detector wall

Particles evaporate from the ³⁰Si compound nucleus to form various residual species.

Mostly observed ²²Ne.

¹J. Greene et al. J. Radioanal. Nucl. Chem. 299 1121 (2014)

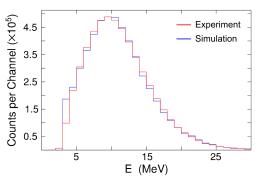
²²Ne lineshapes


Doppler shift lineshape analysis

- Want to determine lifetimes of transitions from their lineshapes, which arise from the Doppler shift distribution of recoiling nuclei
- Many factors influence this...
 - Momentum of incoming beam
 - Momentum distribution of particles evaporated after reaction
 - Distribution of reaction positions within the target
 - Stopping of beam and reaction products inside the target/stopper
 - Geometry of the detector system(s) with respect to the reaction target
 - Other annoying things such as detection efficiencies
 - ...
 - Lifetime of the transition

Parameter space is way too large to solve analytically \rightarrow need to simulate the process!

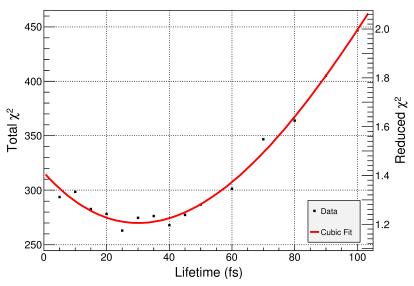
Doppler shift lineshape analysis code


- GEANT4¹ based analysis code to extract lifetimes from DSAM lineshapes was developed, including:
 - Target, stopper, and detection system geometry
 - Fusion-evaporation reaction kinematics
- Additional code for comparing lineshapes between simulation and experiment using χ^2 analysis has been developed.

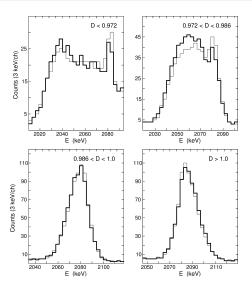
¹S. Agostinell, et al., Nucl. Instr. Meth. Phys. Res. A 506 250303 (2003).


Fusion Evaporation in GEANT4

- Formation of compound system at a random depth in the target, followed by emission of one or more particles.
- Gamma-ray emission from the residual nucleus according to user defined lifetime.
 - GEANT4 handles particle momenta and Doppler shift of gamma rays.
 - Sequential gamma ray emission is possible (cascades).


 Evaporated particle energy distribution modelled to match experiment (Gaussian with exponential tail).

Lineshape vs. lifetime


Peak shape vs. simulated lifetime for the 5523 keV level in $^{22}\mathrm{Ne}.$

χ^2 statistic

 χ^2 statistic vs. simulated lifetime for the 5523 keV level in $^{22}{\rm Ne}.$

χ^2 statistic

Best fit simulated lineshapes for the 3357 keV level in ²²Ne at various Doppler Shift factors.

Lifetimes in ²²Ne

Measured lifetimes for select observed ²²Ne transitions.

Evaluated E_{level} (keV) ¹	$J\pi^1$	Evaluated $ au$ (fs) ¹	Measured $ au$ (fs)
3357.2	4+	324(6)	290(50)
5146.0	2-	1200(300)	1100(200)
5523.3	(4)+	30(4)	30(10)
6311.0	(6+)	71(6)	70(5)
6345.1	4+	19(4)	11(6)
7423.0	(5+)	< 4	5(11)
8976	-	-	< 6

¹M. S. Basunia, Nuclear Data Sheets 127 (2015) 69–190.

Analysis summary

Analysis of ²²Ne from the commissioning run data is complete.

 Tools appear to be functioning well, are designed to be extendable to future experiments.

Detailed paper on analysis technique has been published:

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 859, 1 July 2017, Pages 8-17

Implementation of the Doppler shift attenuation method using TIP/TIGRESS at TRIUMF: Fusion-evaporation lifetime measurements in ²²Ne

```
J. Williams<sup>a, & ™</sup>, C. Andreolu<sup>a</sup>, R. Ashley<sup>a</sup>, G.C. Ball<sup>b</sup>, T. Ballast<sup>b</sup>, P.C. Bender<sup>b</sup>, C. Bolton<sup>c</sup>, V. Bildstein<sup>d</sup>,
A. Chester<sup>a</sup>, D.S. Cross<sup>a</sup>, T. Domingo<sup>a</sup>, T. Drake<sup>a</sup>, A. Garnsworthy<sup>b</sup>, P. Garrett<sup>d</sup>, B. Hadinia<sup>d</sup>, G. Hackman<sup>b</sup>,

⊞ Show more
```

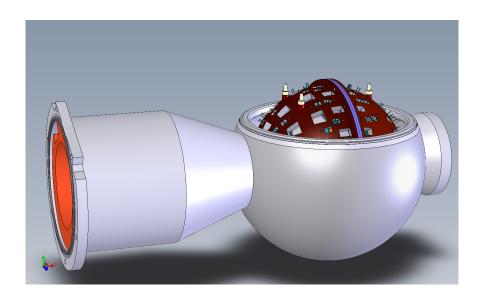
Further developments

Further developments

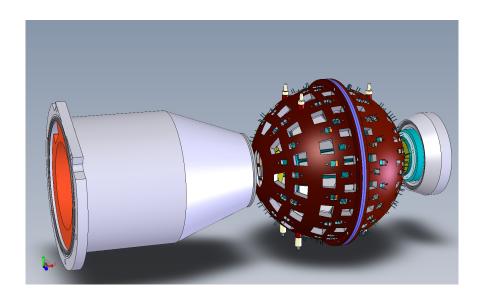
- 1) Csl ball construction
- 2) ⁴⁰Ca target development

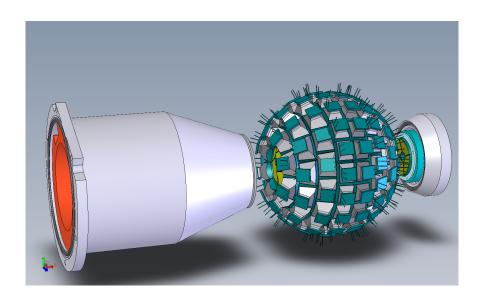

TIP Csl ball

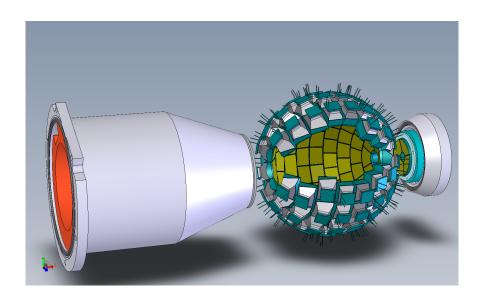
Spherical array which replaces the 24-element wall.


- 128 detectors in 10 rings.
- Total array gives $\sim 3\pi$ coverage.

The first 4 rings (38 detectors) have been tested in beam.




TIP Csl ball design


TIP Csl ball design

TIP CsI ball design

TIP CsI ball design

⁴⁰Ca targetry

 40 Ca is the heaviest stable N=Z species - would be a very useful target material for studies of proton rich species.

Unfortunately, chemistry isn't on our side:

• Calcium oxidizes spontaneously and rapidly:

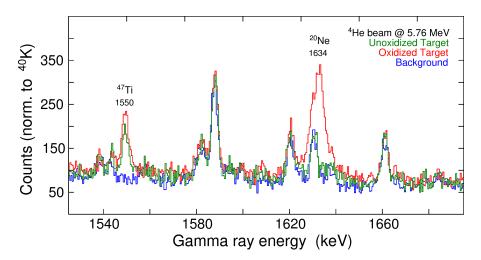
$$2~\mathsf{Ca}~(\mathsf{s}) + \mathsf{O}_2~(\mathsf{g}) \rightarrow 2~\mathsf{CaO}~(\mathsf{s})$$

- Earth has a lot of oxygen in its atmosphere.
- Fusion reactions on oxygen have high cross sections and contaminate measurements.

⁴⁰Ca targetry (cont.)

Evaporator provided by TRIUMF detector lab for target production.

- Dual-boat: can evaporate calcium and protective layer material without breaking vacuum.
- Can be vented to argon rather than air.


Developed protected Ca targets:

- Gold foil backing.
- Calcium spot at center (5mm diameter, $\sim 1 \text{ mg/cm}^2$).
- Gold protective layer (\sim 0.2 mg/cm²) covering frame.

Target test results

Looked for ⁴He fusion on various targets.

Future Work

Will run an experiment studying $N = Z^{68}$ Se via 40 Ca $(^{36}$ Ar, $2\alpha)^{68}$ Se.

Planned for this fall.

Possible future directions:

- Analysis of ²⁸Mg data.
- Use of calcium target to study other nuclei.
 - 55,56 Ni (N=Z=28 region) via 20 Na + 40 Ca fusion-evaporation.
 - Heavy proton-rich species using other proton-rich RIBs.

Acknowledgements

Simon Fraser University

Current: A. Chester, T. Domingo, K. Starosta Former: R. Ashley, U. Rizwan, P. Voss Other Groups: C. Andreoiu, D. S. Cross

SFU Science Machine & Electronics Shops

R. Holland, P. Kowalski, J. Shoults, K. Van Wieren

TRIUMF

G. Ball, T. Ballast, P. C. Bender, C. Bolton, A. Garnsworthy, G. Hackman, R. Henderson, R. Krücken, D. Miller, W. J. Mills, M. Moukaddam, M. Rajabali, C. Unsworth, Z.-M. Wang

University of Guelph

V. Bildstein, P. Garrett, B. Hadinia, D. Jamieson, B. Jigmeddorj, C. E. Svensson, A. D. Valera, J. Wong

University of Liverpool

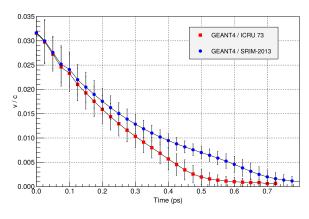
C. Unsworth

University of Surrey

A. Knapton

University of Toronto

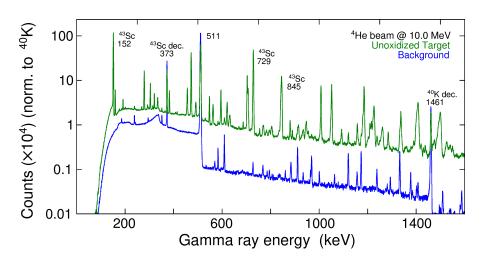
T. Drake



Analysis code used in this project is available at github.com/SFUNUSC

Stopping power comparison

Comparison of simulations using stopping powers from ICRU73¹ (GEANT4 default) and SRIM² was performed.

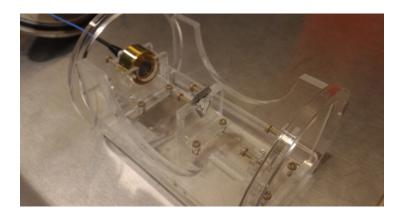

For transitions with short lifetimes (< 0.2 ps) the effect on the source speed distribution is $\le 10\%$.

Residual nucleus speed in gold as a function of stopping time. Initial residual energy distribution taken from full simulations.

¹ICRU Report 73, J. ICRU **5(1)** 1 (2005) ²J. Ziegler et al., Nucl. Instr. Meth. Phys. Res. B **268** 1818 (2010)

April target test results

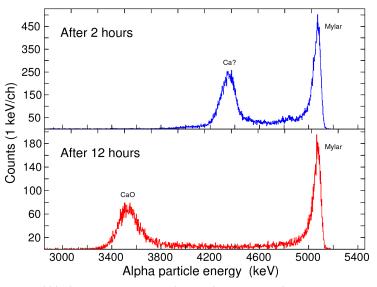
April target test results


Protected target:

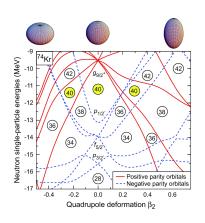
- No evidence of reactions on oxygen.
- No visible change in the target surface during the run.
- \bullet $^{16}{
 m O}/^{40}{
 m Ca}$ number density based on PACE4 cross-sections: < 0.15%
 - From observed production of ²⁰Ne, ⁴⁴Ti.
 - Compared to 7.0% from previous run.

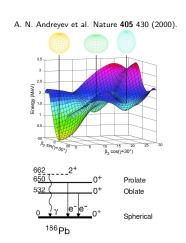
Exposed (oxidized) target:

- Exposed to atmosphere for 2 days before running.
- Production of ²⁰Ne from alpha fusion on oxygen observed.
- \bullet $^{16}{
 m O}/^{40}{
 m Ca}$ number density based on PACE4 cross-sections: 3.4%


Alpha energy loss in calcium

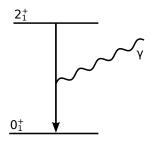
Investigated energy loss of alpha particles in calcium targets, in order to determine thickness of calcium layer based on known stopping powers.


- ²⁴¹Am source, target, and Si detector in fixed geometry.
- Thin mylar target backing used to allow alpha transmission.


Alpha energy loss in calcium

Work to measure oxidation kinetics underway...

Shape coexistence along the N = Z line



• Nearly degenerate shell gaps exist for positive and negative quadrupole deformations leading to shape coexistence.

Studying nuclear structure using the electromagnetic force

- The electromagnetic force provides a convenient non-intrusive probe of nuclear systems bound by the strong force.
- Lifetime measurements using gamma-ray spectroscopy provide:
 - An observable sensitive to nuclear structure.
 - 2 A sensitive benchmark for nuclear model calculations.

$$\tau(E2; 2_1^+ \to 0_1^+) = \lambda(E2; 2_1^+ \to 0_1^+)^{-1}$$
$$\lambda(E2; 2_1^+ \to 0_1^+) \propto E(2_1^+)^5 \times B(E2; 2_1^+ \to 0_1^+)$$
$$B(E2; 2_1^+ \to 0_1^+) = \frac{1}{5} \left| \langle 2_1^+ | | E2 | | 0_1^+ \rangle \right|^2 \propto \beta^2$$

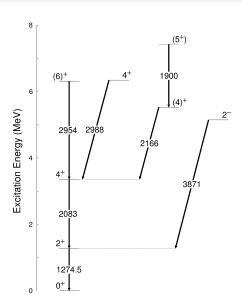
Recent studies in N = Z = 34 ⁶⁸Se

Model calculations

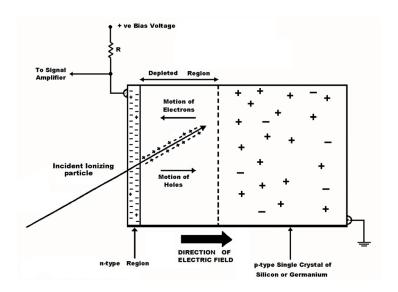
Model	Shell Model	Interacting	Hartree-	Self-consistent		Excited
		Boson Model	Bogoliubov	Collectiv	e Coordinate	Vampir
$B(E2, 2_1^+ \rightarrow 0_1^+) [e^2 fm^4]$	100 ¹	280 ²	500 ³	725 ⁴	834 ⁴	1048 ⁵

 $^{^{1}}$ M. Hasegawa et al. Phys. Lett. B **656** 51 (2007).; 2 F. II. Khudair, Y. S. Li, G. L. Long, Phys. Rev. C **75** 054316 (2007). 3 T. A. War et al. Eur. Phys. J. A **22** 13 (2004).; 4 N. Hinohara et al. Prog. Theor. Phys. (Kyoto) **119** 59 (2008).

Recent measurements


Method	$B(E2, 2_1^+ \rightarrow 0_1^+) [e^2 \text{fm}^4]$	au [ps]
Coulomb Excitation ⁶	430(60)	4.2(6)
Recoil Distance Method ⁷	390(70)	4.6(8)

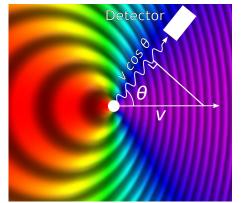
⁶A. Obertelli et al. Phys. Rev. C **80** 031304(R) (2009).


⁵A. Petrovici et al. Nucl. Phys. A **710** 246 (2002).

⁷A. J. Nichols et al. Phys. Rev. B **733** 52 (2014)

²²Ne level scheme

Semiconductor detector (eg. HPGe) schematic


Relativistic Doppler effect

For photons:

E = hf (energy)

 $\lambda = c/f$ (wavelength)

T=1/f (wave period)

Other definitions:

$$\beta = \mathbf{v}/\mathbf{c}$$

$$\gamma = \frac{1}{\sqrt{1-\beta^2}}$$

From non-relativistic Doppler shift:

$$\lambda_{obs} = \frac{c}{f_{obs}} = \frac{c - v_{||}}{f_{src}}$$
$$= \frac{c - v_{src} cos\theta}{f_{src}}$$

$$\frac{f_{obs}}{f_{src}} = \frac{T_{src}}{T_{obs}} = \frac{c}{c - v_{src}cos\theta}$$
$$= \frac{1}{1 - \beta cos\theta}$$

Relativistic Doppler effect (cont.)

From time dilation (special relativity):

$$T_{src} = rac{T_{obs}}{\gamma}, \gamma = rac{1}{\sqrt{1-eta^2}}$$
 $rac{f_{obs}}{f_{src}} = rac{T_{src}}{T_{obs}} = rac{1}{\gamma} = \sqrt{1-eta^2}$

Combining Doppler shift and time dilation:

$$rac{f_{obs}}{f_{src}} = rac{\sqrt{1 - eta^2}}{1 - eta cos heta}$$

$$E_{obs} = E_{src} \frac{\sqrt{1-\beta^2}}{1-\beta cos\theta}$$

Semi-empirical mass model¹

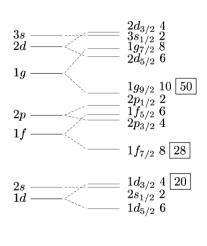
Model treating the nucleus like a liquid drop, with shell model correction terms:

$$BE(A, Z) = a_V A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \Delta E_{pair}$$

Deformation from sphericity affects the surface and Coulomb terms, eg. for ellipsoidal deformation:

$$a_s A^{2/3}
ightarrow a_s A^{2/3} (1 + (2/5)\epsilon^2)$$

$$a_c \frac{Z(Z-1)}{A^{1/3}}
ightarrow a_c \frac{Z(Z-1)}{A^{1/3}} (1 - (1/5)\epsilon^2)$$


$$\epsilon = \sqrt{1 - b^2/a^2} \ \ (\text{minor/major axis length ratio})$$

¹K. Heyde, Basic Ideas and Concepts in Nuclear Physics, IOP Publishing, 2004.

Nuclear shell model

Similar to electron shell model. Main differences:

- Flat-bottom potential representing nuclear interaction.
- Protons and neutrons have their own shells.
- Strong spin-orbit coupling results in different magic numbers.
 - Due to spin dependence of the nuclear interaction, from coupling of a nucleon's spin and its orbital angular momentum (which depends on the mean field produced by all nucleons).

Fermi's golden rule

Transition rate depends on initial and final wavefunctions, interaction V_p which causes the transition, and density of final states $\rho(E_f)$.

$$\lambda = \frac{2\pi}{\hbar} \left| \int \psi_f^* V_\rho \psi_i dv \right|^2 \rho(E_f)$$
$$\propto |\langle \psi_f | V_\rho | \psi_i \rangle|^2$$

So for an E2 transition:

$$\lambda \propto \frac{1}{5} \left| \langle 2_1^+ | | E2 | | 0_1^+ \rangle \right|^2 = B(E2; 2_1^+ \to 0_1^+)$$

Weisskopf estimates¹

Estimates of reduced transition probabilities assuming a single particle transition and nucleus with uniform density, radius $R = r_0 A^{1/3}$.

$$B(EL) = \frac{1}{4\pi} \left[\frac{3}{L+3} \right]^2 (r_0)^{2L} A^{2L/3} \left[e^2 fm^{2L} \right]$$

$$B(ML) = \frac{10}{\pi} \left[\frac{3}{L+3} \right]^2 (r_0)^{(2L-2)/2} \mu_n^2 \left[e^2 fm^{2L-2} \right]$$

 μ_n - magnetic moment of particle of interest.

¹W. Loveland, D. J. Morrissey, G. T. Seaborg, Modern Nuclear Chemistry, Wiley, 2006.

Nuclear charge distribution¹

Potential arising from charge distribution $\rho(\vec{r})$ of nucleons at a distance \vec{R} :

$$\Phi(ec{R}) = rac{1}{4\pi\epsilon_0} \int_{Vol} rac{
ho(ec{r})}{|ec{R} - ec{r}|} dec{r}$$

Expanded in $|\vec{r}/\vec{R}|$:

$$\Phi(\vec{R}) = \frac{1}{4\pi\epsilon_0} q/R + \sum_{i} \frac{p_i}{4\pi\epsilon_0} \frac{X_i}{R^3} + \sum_{ij} \frac{1}{2} \frac{1}{4\pi\epsilon_0} \frac{Q_{ij}}{R^5} X_i X_j + \dots$$

$$p_{i} = \int \rho(\vec{r}) x_{i} d\vec{r},$$

$$Q_{ij} = \int \rho(\vec{r}) (3x_{i}x_{j} - r^{2}\delta_{ij}) d\vec{r}.$$

with i = 1,2,3 corresponding to Cartesian coordinates x, y, z.

¹K. Heyde, Basic Ideas and Concepts in Nuclear Physics, IOP Publishing, 2004.