Self Shielded Holding Field Coil for the nEDM Experiment at TRIUMF

Roseanna Burrough University of Winnipeg

Why nEDM?

- □ The electric dipole moment is the distance between positive and negative charges within a system.
- □ The size of the neutron Electric Dipole Moment predicted by the standard model via the CP violating phase of the CKM matrix is ~10⁻³¹
- □ Larger value could help explain the baryon asymmetry

The nEDM experiment at TRIUMF

- Uses new high intensity ultra cold neutron (UCN) production technique.
- □ Next generation experiments are aiming for d_n <10⁻²⁷⁽²⁸⁾e · cm.
- ☐ Homogeneity of the B₀ field is major systematic error. Leading to a false nEDM

$$d_{nfalse} = -\frac{\hbar}{4} \frac{\langle v_n^2 \rangle}{c^2} \frac{1}{B_{0z}^2} \frac{\partial B_{0z}}{\partial z}$$

Magnetic Requirements

Fermi Potential, Quartz ~90neV, Sapphire~160eV

- Comparison of two
 nEDM cell materials and
 how important they are
 with regards to field
 homogeneity
 requirements
- We want 0.1nT/m because this produces a much smaller false nEDM.

Self Shielded Coil

- ☐ Self contained
- Inner coils creates magnetic field, outer contains field by application of opposing field.
- ☐ Unknown manufacturing tolerance.

Coil Design Theory

We use Maxwells equations with no free currents or magnetic materials. This means the magnetic field strength (H) can be defined as $H=-\nabla U$ where U is the magnetic scalar potential, and in the regions of free space $\nabla^2 U=0$

We then apply appropriate boundary conditions, that require $U_1=U_2$ at surface 2 and no flux leaving surface 1

Getting Current Wire Placement

$\Delta U=U_1-U_2$

$$\int_{a}^{b} \left[-\overrightarrow{\nabla}(\Delta U) \right] \cdot d\overrightarrow{l} = -(\Delta U_{b} - \Delta U_{a})$$

This takes you from one contour of constant ∇U containing point a to another containing point b. Then using boundary condition.

$$\hat{n} \times [-\overrightarrow{\nabla}(\Delta U)] = \frac{4\pi}{c}\overrightarrow{K}$$

We get that the difference in ∇U 's is equivalent to the surface current between a and b

$$\int_{a}^{b} (\overrightarrow{K} \times d\overrightarrow{l}) \cdot \hat{n} = -I$$

If the contours are equally spaced then the surface current is the same between each of the contours and can be approximated by equally spaced wires in contours of constant ΔU

COMSOL

- ☐ Finite Element Analysis (FEA)
- ☐ Employs boundary conditions to define current placement for the desire magnetic field.
- \Box Giving contours of constant $\triangle \Delta U$ (change in ΔU)

We take these contours and interpret them as wires.

Sorting Points

9

x(m)

- \Box COMSOL outputs the points separating the levels of constant $\Delta\Delta U$, but not necessarily the right order.
- □ Uses Python script to take COMSOL's output and put it a format suitable for a Biot Savart calculation

Model Variations

Main coil=64 turn End cap=4 turn Right: Main coil=256 turn End cap=32 turn

Magnetic Field

Magnetic field along the z-axis, $Blue = B_x$ and $Red = B_z$ and $Green = B_y$

We use Biot Savart calculation to find the magnetic field created by the coil

Future Work

- ☐ Fabrication tolerance investigation
 - Current wire zig zags on surface.
 - Comparisons on moving each coil lop.
- ☐ Full optimization of coil
- ☐ Gradient compensation coils

Thanks

- □ Dr Chris Crawford
- ☐ CINP
- □ NSERC
- University of Winnipeg

