Cold and thermal neutron flux measurements at TRIUMF

May 31st, 2017

Lori A Rebenitsch

On behalf of Japan-Canada UCN collaboration

Outline

Introduction

- Neutron electric dipole moment
- Ultra cold neutrons
- Tests at TRIUMF

Neutron flux experiments

- Cold neutron measurement
- Thermal and colder neutron measurement

Neutron Electric Dipole Moment

Baryogenesis

- Baryon/antibaryon asymmetry in the early universe
- Sakharov conditions (Sakharov, 1967)
 - Baryon number violation
 - CP-symmetry violation
 - Interactions outside of thermal equilibrium
- Extensions to Standard Model increase CP-violation
- Mow to measure this?
 - By measuring the neutron electric dipole moment (nEDM)
 - Probe for new sources of CP-violation
- (R3-4) Beatrice Franke's talk will cover more Thurs. at 1:30pm.

Ultra Cold Neutrons

Properties

- o < 3mK
- \circ ~7m/s
- Subject to gravity
- Polarizable

$$d_n = \frac{h}{4E} (f_{n\uparrow\uparrow} - f_{n\uparrow\downarrow})$$

- $|d_n| \sim 3.0 \times 10^{-26}$ e-cm for current experimental limit (Pendlebury et. al)
- $|d_n| < 10^{-26}$ e-cm for new physics
- $|d_n| < 10^{-31}$ e-cm for CKM in Standard Model

UCN production layout at TRIUMF

UCN production layout

- Proton beam produces spallation neutrons on tungsten target
- ∞ Neutrons are thermalized by lead, and warm D_2O
- ∞ Cold D₂O further cools neutrons to cold temperatures
- Cold neutrons are further cooled to UCN level in the He-II volume and delivered to EDM apparatus

Beam on target at TRIUMF

Run Number	Temperature (K)	Date (in 2016)	Irradiation time	Integrated Beam (nA-s)
1	. 126	Nov 22 nd	8 min	320605
2	. 87	Nov. 23 rd	15 min	364380
3	8	Nov. 29 th	8 min	274545
4	35	Nov. 29 th	7 min	300995
5	8	Dec. 2 nd	8 min	323907.5
6	65	Dec. 6 th	9 min	351504
7	8	Dec. 12 th	1 hr 42 min	306192
8	49	Dec. 13 th	1 hr 58 min	284334
9	300	Dec. 20 th	1 hr 6 min	303645
10	300	Dec. 20 th	1 hr 35 min	312393
11	. Empty	Dec. 21st	1 hr 17 min	349125

Measuring neutron flux

- Experiments to measure thermal and cold neutron production
 - Experiment to measure cold neutron flux using multiple activation foils
 - Experiment to test graphite reflector/moderator effect on thermal neutrons around cold source using gold foils
- Irradiation tests done at TRIUMF winter 2016

Cold neutron measurement

- Measure cold neutron flux (~1meV) inside cryostat
- 176Lu and 151Eu neutron capture resonance around 1meV
- Other metals for unfolding remaining spectrum

Measuring activation

- Gamma activity measured via HPGe detectors
- Mark Two calibrations available
 - On surface of Ge crystal
 - 0.5 m above Ge crystal
- Systematic differences between calibrations
 γ-ray spectrum measured by Ge detector

10⁵
177Lu
198Au
104
177Lu
198Au
152Eu
103
152Eu

0.5m distant from detector

Activation results

- Activation results for the multiple metals powder
- Foil activation measured with different HPGe calibrations

 $.5\stackrel{\times 10^3}{\vdash}$

Compared to MCNP simulation

On contact measurement

0.5m distant measurement

 D_2O temperature (K)

MCNP simulation

Calculated neutron spectrum in cryostat

Reconstructed neutron spectrum

Thermal neutron measurement

- Measure thermal and colder neutron flux outside cryostat
- Calculate total neutron flux for bare and Cdcovered 197Au

$$\phi_{th} = \phi_b - \phi_c$$

Find thermalizing effect of graphite reflectors

Au foil placement determination

- Placement of foils determined via FLUKA simulations
- Due to presence of graphite columns, activation has peaks between cryostat and graphite
- Foils placed in expected peak and valley positions

Sample Activation

- Peak valley structure noted
- Systematic errors in different HPGe calibrations (see previous)

To be continued...

- © Cold neutron tests: Activation cross section measurement at J-PARC MLF planned for Nov. 2017 to reduce cross section uncertainty for the cold neutron analysis
- Mark Thermal neutron tests
 - Material activations are being analyzed for various temperatures, from 8K to 300K
 - Systematic effects from the HPGe measurements to be finalized.

Thank you

80 17 CB

Back up

80 18 C3

Optimizing UCN production

Cold neutrons downscattered to UCN in He-II

$$P(V_f) = \int_0^\infty dE \int_0^{V_f} N \frac{d\phi}{dE} \cdot \frac{d\sigma}{dE'} (E \to E') dE'$$

- Fermi potential of He-II: $V_f = 233 \text{ neV}$
- Focus on 1 meV neutrons

Fig. 2. $S(q,\hbar\omega)$ at SVP for (a) q=0.90 A⁻¹ and (b) q=0.95 A⁻¹. The vertical lines indicate the energy of an incident neutron with $E=\hbar^2q^2/2m_n$ that can be down-scattered to the UCN energy range. The width of the single phonon excitation is dominated by the finite resolution of the instrument. The roton-maxon (R+M) and two maxon (2M) resonances at higher energies are significantly lower in intensity.

Au foil activation

Au has 1/v activation

$$\#UCN \propto \#n_{spallation}$$
 and $\#n_{thermal}$

$$^{197}Au + n \rightarrow ^{198}Au \rightarrow ^{198}Hg + e^- + \gamma$$

\wp γ energies

- 411.8 keV main transition
- 675.9 keV
- 1087.7 keV

$$\phi_i = A_i \frac{t}{A\sigma_{abs}N(1 - e^{-t/\tau})}$$
$$\phi_{th} = \phi_b - \phi_c$$

