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Outline: 
• Quick introduction to the processes of nucleosynthesis  

• Focus on the r-process and the data required to model the 

process. 

• Talk about the general requirements for making measurements: 

production, half-life limitations, precision etc. 

• Describe our set-up for making measurements at CARIBU 

• Describe some of our results. 

• Future plans 

Sharma – CAP 2017                                       Slide 2 



A brief history of the universe 

• Big Bang – creation 

• Cooling and some synthesis of 

light elements in the first 10 to 

1000 seconds. Lots of H and He. 

Smaller quantities of D, T, 7Li 

• Formation of stars and the 

synthesis of heavier elements 

through fusion. Up to Fe. 

• s-process nucleosynthesis 

• Nucleosynthesis of the heavier  

elements during explosions: p-, 

rp-, r-, np- processes 
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Observed elemental abundances 

• Observed distribution 

(by mass number) of 

the elements in the 

solar neighborhood. 

• One of the ‘Greatest 

Unanswered 

Questions of Physics’ 
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Chart of the nuclides 
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N 
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Reaction paths & processes 

•rp/νp-process (x-ray 

bursts) produce heavy 

elements, but are not 

released into the ISM 

• s-process (AGB stars) 

produce heavy 

elements up to A=208 

(half of all heavy 

nuclei) 

• r process possibly 

produces the other half 

of heavy elements A>56 
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Is the r-process universal? 

• r-process abundances:  

total abundances 

minus abundances 

from all other 

processes. 

• Relative abundances 

from different stars are 

identical.   

• Indicates a common 

process which 

produced these 

elements! 

 

Sharma – CAP 2017                                       Slide 7 



• Each site has different conditions, 

and it is still unclear which can 

produce the observed abundance 

distributions 

• The models require a high density 

of neutrons, high temperature 

environment 

• T ~ 1-2 GK 

• Neutron number density ~ 

1024/cm3 

 

 

Possible sites 
for the r-process 
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Nuclear reactions involved in the 

astrophysical r-process 

• Elements are created by a 

series of rapid neutron-

capture events. 

• Other reactions compete 

with this process. 

 

Z+1,N 

Beta-decay reactions β 

Z,N 

Neutron-capture reactions (n,γ) 

Z,N+1 

Photodisintegration reactions (γ,n) 

N 

Z 
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r-process element synthesis during 

event 
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At the end of the event 

N 

Z 

As the event ends, 

the neutron number 

density and temperature 

decrease, and further 

neutron captures are 

improbable.  The main 

method of decay is then 

beta-decay, all the 

way back to 

stability. 
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What can nuclear physics provide? 

• masses 

• β-decay lifetimes 

• β-delayed neutron emission 

• (n, γ) rates 

• fissionability 
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The ATLAS facility at the Argonne 

National Laboratory 
• ANL: first national 

lab in U.S. 

• roughly 3000 

employees 

• situated on 1500 

acres 
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CARIBU (Californium Rare Isotope 

Breeder Upgrade) 

‘Stopped’ beam 

experimental 

area 

• CARIBU beams can be 

accelerated through ATLAS 

to ~ 15 MeV/A 

• Basic properties of fission 

fragments can be measured 

with instruments in ‘stopped’ 

beam area  
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CARIBU production rates 

• CARIBU: uses 252Cf 

spontaneous fission source to 

provide neutron-rich isotopes 

•252Cf source properties:   

• 3% fission branch 

• 2.6 year half-life 

• ~ 1 Ci (40 billions 

decays / s ) 
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CARIBU – Details 

LOW ENERGY 
EXPERIMENTAL 
AREA 

BPT 
X-ARRAY 

TAPE STATION 

CPT 

GAS CATCHER 
ISOBAR SEPARATOR 

BUNCHER 
MR-TOF 

252Cf Source 



Intro to Penning traps 

B


• constant axial magnetic field 

• particle orbits in horizontal plane 

with cyclotron frequency: 

 

 

• free to escape axially 

m

qB

c


•Add a harmonic potential 

(along magnetic field axis) to 

confine particles. 

Confining potential: 
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Motions in the Penning trap 

ω+: reduced cyclotron motion 

ω-: magnetron motion 

z: axial motion 
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picture from http://isoltrap.web.cern.ch/isoltrap/ 
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The frequencies of motion are split: 

Frequencies are related by: 
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Penning trap projects - worldwide 
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Time of Flight Ion Cyclotron Resonance 

• TOF-ICR method 

• 500 ms excitation 

• 133Cs 

• Frequency 

measurement – Fourier 

limited 

• Need to scan over 

extended frequency 

range. 

 

Sharma – CAP 2017                                       Slide 21 



Mass measurements of neutron-rich 

nuclides 
• Much interest and increasing 

access to this region 

• Canadian Penning Trap (CPT) 

has measured more than 150 

neutron-rich nuclides. 

• Mass precision ~ 10-7 to 10-8 

(10 -100 keV/c2) for masses 

approaching the r process 

• Currently reaching isotopes 

produced at the 10-7 fission 

branch level  

 

 

J. A. Clark and G. Savard, Int. J. Mass Spectrom. 349-350, 81 (2013). 
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Comparison with evaluated data 
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Higher N 

 In     Sn            Sb               Te                     I               Xe         Cs      Pr  Nd       Pm        Sm       Eu Gd 

• Nuclei are less bound with neutron excess (affects 

the location of the r-process path) 

• Good agreement with other Penning trap results 

and reaction Q value measurements 

• Large disagreement with results obtained with β-

decay measurements and extrapolations 
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New measurement technique – PI-ICR 

• Use a position-sensitive 

MCP detector and ‘project’ 

ion motion onto it 

Phase imaging – ion cyclotron resonance 

• The orbital frequency of the 

ion’s motion is calculated from 

the phase change over time. 
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Phase-Imaging Ion-Cyclotron-
Resonance 
PI-ICR method at the CPT 
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• Position-sensitive MCP is used to measure the orbital phase of 

trapped ions 

• Instead of measuring ωc , we 

measure ω+ + ω- in one 

measurement. 



PI-ICR: Reaching weaker beams 
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• 160Nd is produced at ~2x10-5 

% from 252Cf 

 

• We saw ~5 ions/hr 

 

• This plot shows ~25 Nd 

ions, and a mass uncertainty 

of <100 keV is found 

 

• A resolution of R = 

2,000,000 is achieved in less 

than 100ms, a feat which 

would take ~3 seconds in 

TOF-ICR 

160

Nd 
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PI-ICR: Improved resolution  
Beam of A = 142 

28 

Trf = 

300ms 



Prospects: 
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• The MR-TOF has been 

installed at CARIBU, 

typically obtain 

resolving power of R = 

50,000 in 10ms 

 

• PI-ICR has been 

implemented at the CPT 

allowing us to probe 1-3 

neutrons further from 

stability 

 

• PI-ICR provides a factor 

of ~30 improvement in 

resolution, and is 

intrinsically more 

efficient than TOF-ICR 



Conclusion: 
• Elements in the universe were created by a variety of processes. 

• The r process is thought to create half the elements heavier than iron 

• Models of the r process rely on good data of nuclide properties  

• Ion traps are revolutionizing the way nuclide properties are measured 

• Penning traps provide most reliable and precise mass measurements 

• Access to previously elusive neutron-rich nuclides is becoming available with 
new facilities and new techniques 

• Studies of rare, short-lived nuclides require fast, efficient, and clean 
injection schemes 

• First measurements indicate interesting times lie ahead 

                                   Thank you for your attention 
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