

Next-generation neutrinoless double beta decay search with LXe

Razvan Gornea Carleton University & TRIUMF

2017 CAP Congress

Kingston, May 31, 2017

Neutrinos in the standard model

Fractional Flavor Content varying $\cos \delta$

Neutrinos in the standard model

<u>Neutrinos masses stand apart from that of the charged fermions</u>

Neutrinoless double beta decay

$$\begin{split} \left[T_{1/2}^{0\nu}(0^+ \to 0^+) \right]^{-1} &= G^{0\nu}(Q_{\beta\beta}, Z) \left| M^{0\nu} \right|^2 \left\langle m_{\beta\beta} \right\rangle^2 \\ &\left\langle m_{\beta\beta} \right\rangle = \left| \sum_{k=1}^{?} m_k \left| U_{ek} \right|^2 e^{i\alpha_k} \right| \end{split}$$

Neutrinoless double beta decay

Isotope selection

Nuclear Matrix Elements

EDF: T.R. Rodriguez and G. Martinez-Pinedo, PRL 105, 252503 (2010) ISM: J. Menendez et al., Nucl Phys A 818, 139 (2009) IBM-2: J. Barea, J. Kotila, and F. lachello, PRC 91, 034304 (2015) QRPA: F. Šimkovic et al., PRC 87 045501 (2013) SkyrmeQRPA: M.T. Mustonen and J. Engel PRC 87 064302 (2013)

Other LNV processes

 Low scale seesaw: intriguing example with one light sterile V_R with mass (~eV) and mixing (~0.1) to fit short baseline anomalies

• Extra contribution to effective mass

Usual phenomenology turned around !

EXO-200 prototype

Data collection

side 2. where the event

occurred.

The light signal always precedes both charge signals. The induction (V) signal precedes the collection (U) signal.

Data collection

Event topology

Particle ID & fiducial volume

Energy measurement

EXO-200 backgrounds

EXO-200 results

Future experiments

Arguments in favour of a rich and diversified <u>ονββ search program</u>

Low density trackers

- NEXT, PandaX (136Xe gas TPC) - SuperNEMO (foils and gas tracking, ⁸²Se) **Pros: Superb topological information** Cons: Very large size

• There could be unknown gamma transitions and a line observed at the "end point" in one isotope does not necessarily imply the 0vββ decay discovery

- Nuclear matrix elements are not very well known and any given isotope could come with unknown liabilities
- Different isotopes correspond to vastly different experimental techniques
- 2 neutrino background is different for various isotopes
- The elucidation of the mechanism producing the decay requires the analysis of more than one isotope

Liquid (organic) scintillators

- KamLAND-ZEN (136Xe)
- SNO+ (130Te)
- Pros: "simple", large detectors exist, self-shielding Cons: Not very specific, 2v background

Crystals

- GERDA, Majorana (76Ge)
- CUORE, CUPID (130Te)

Pros: Superb energy resolution, possibly 2-parameter measurement **Cons: Intrinsically fragmented**

Liquid TPC - nEXO (136Xe)

Pros: Homogeneous with good E resolution and topology Cons: Does not excel in any single parameter

Future experiments

								v		, -			_
Experiment	Iso.	Iso.	σ	ROI	ϵ_{FV}	ϵ_{sig}	ε	B	3σ disc. sens.		Required		
-		Mass							$T_{1/2}$	$\hat{m}_{oldsymbol{eta}oldsymbol{eta}}$	Imp	rovei	ment
		$[\mathrm{kg}_{iso}]$	[keV]	$[\sigma]$	[%]	[%]	$\left[\frac{\mathrm{kg}_{iso}\mathrm{yr}}{\mathrm{yr}}\right]$	$\left[\frac{\mathrm{cts}}{\mathrm{kg}_{iso}\mathrm{ROI}\mathrm{yr}}\right]$	[yr]	$[\mathrm{meV}]$	Bkg	σ	Iso. Mass
LEGEND 200 [61, 62]	76 Ge	175	1.3	[-2, 2]	93	77	119	$1.7\cdot10^{-3}$	$8.4\cdot10^{26}$	40-73	3	1	5.7
LEGEND 1k [61, 62]	76 Ge	873	1.3	[-2, 2]	93	77	5 93	$2.8\cdot 10^{-4}$	$4.5\cdot 10^{27}$	17 - 31	18	1	29
SuperNEMO $[68, 69]$	82 Se	100	51	[-4, 2]	100	16	16.5	$4.9\cdot 10^{-2}$	$6.1\cdot 10^{25}$	82-138	49	2	14
CUPID [58, 59, 70]	82 Se	336	2.1	[-2, 2]	100	69	221	$5.2\cdot10^{-4}$	$1.8\cdot 10^{27}$	15 - 25	n/a	6	n/a
CUORE [52, 53]	$^{130}\mathrm{Te}$	206	2.1	[-1.4, 1.4]	100	81	141	$3.1\cdot 10^{-1}$	$5.4\cdot10^{25}$	66 - 164	6	1	19
CUPID [58, 59, 70]	$^{130}\mathrm{Te}$	543	2.1	[-2, 2]	100	81	422	$3.0\cdot10^{-4}$	$2.1\cdot 10^{27}$	11 - 26	3000	1	5 0
SNO+ Phase I $[66, 71]$	$^{130}\mathrm{Te}$	1357	82	[-0.5, 1.5]	20	97	164	$8.2\cdot10^{-2}$	$1.1\cdot 10^{26}$	46 - 115	n/a	n/a	n/a
SNO+ Phase II $[67]$	$^{130}\mathrm{Te}$	7960	57	[-0.5, 1.5]	28	97	1326	$3.6\cdot10^{-2}$	$4.8\cdot 10^{26}$	22 - 54	n/a	n/a	n/a
KamLAND-Zen 800 $[60]$	136 Xe	750	114	[0, 1.4]	64	97	194	$3.9\cdot10^{-2}$	$1.6\cdot 10^{26}$	47 - 108	1.5	1	2.1
KamLAND2-Zen [60]	136 Xe	1000	60	[0, 1.4]	80	97	325	$2.1\cdot 10^{-3}$	$8.0\cdot 10^{26}$	21 - 49	15	2	2.9
nEXO [72]	136 Xe	4507	25	[-1.2, 1.2]	60	85	1741	$4.4\cdot 10^{-4}$	$4.1\cdot 10^{27}$	9-22	400	1.2	30
NEXT 100 [64, 73]	136 Xe	91	7.8	[-1.3, 2.4]	88	37	26.5	$4.4\cdot 10^{-2}$	$5.3\cdot10^{25}$	82 - 189	n/a	1	20
NEXT 1.5k [74]	136 Xe	1367	5.2	[-1.3, 2.4]	88	37	398	$2.9\cdot 10^{-3}$	$7.9\cdot 10^{26}$	21 - 49	n/a	1	300
PandaX-III 200 [65]	136 Xe	180	31	[-2, 2]	100	35	60.2	$4.2\cdot10^{-2}$	$8.3\cdot10^{25}$	65 - 150	n/a	n/a	n/a
PandaX-III 1k [65]	136 Xe	901	10	[-2, 2]	100	35	301	$1.4\cdot 10^{-3}$	$9.0\cdot 10^{26}$	20 - 46	n/a	n/a	n/a

Agostini et al., arxiv:1705.02996 [hep-ex]

Future experiments

Background contributions in the ROI for the 3000 kg fiducial cut (2.1 events/year total rate)

Ba ion tagging concept

Ba ion detection

Using a relatively simple and well understood fluorescing system

Demonstrated ion cloud imaging and accurate position control

Demonstrated single ion sensitivity using intermodulation technique (background control)

Expected performance

Expected performance

