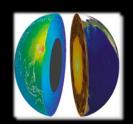


Szymon Manecki, Queen's University

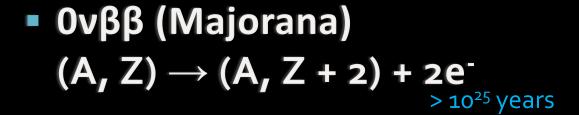
CAP Congress, May 31st, 2017

SNO+ Physics Goals

- Neutrinoless Double Beta Decay of ¹3ºTe
- Low Energy Solar Neutrinos
- Reactor Antineutrinos
- Geo-Neutrinos
- Supernova-v

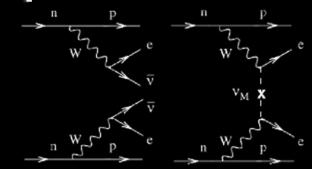


- Three stages:
 - Water phase
 - Liquid scintillator phase
 - Te-loaded liquid scintillator



Double Beta Decay

Are neutrinos their own anti-particles?


■ 2νββ (Dirac)
(A, Z) → (A, Z + 2) + 2e⁻ + 2ν_e


$$\sim 10^{18}$$
-10²¹ years

With the Mass Mechanism:

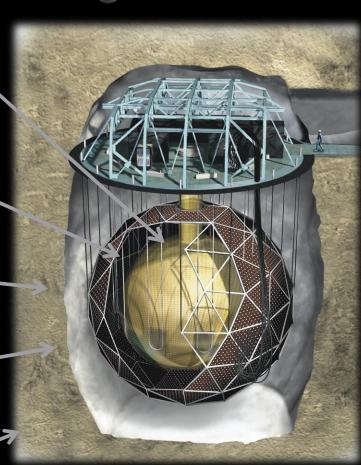
$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2$$

 $\langle m_{\beta\beta} \rangle^2 = |\sum_i U_{ei}^2 m_{\nu i}|^2$

D.B.D. experiments need good energy resolution, low backgrounds, and large amounts of isotope.

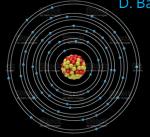
SNO+ Detector

PMT Support Structure ~9400 PMT, 54% Coverage


Acrylic Vessel (AV) Φ=12m, thickness=5cm

Light water (H2O) shielding

- 1700t internal —
- 5300t external


Urylon Liner/Radon Seal

Norite Rock

Linear Alkylbenzene (LAB)

Tellurium (130Te)

ονββ LS Requirements

- Reach high tellurium concentration
 - o.5% Te in 780 tonnes of scintillator
- Preserve good optics of the cocktail
 - Transparency, Scattering, Light Yield
- Maintain high purity of the scintillator
 - U/Th reduction factor
 - Cosmogenic activation

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

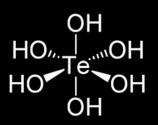
- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

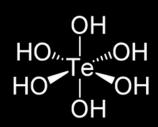
- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

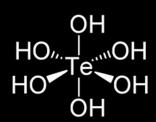

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):

$$H_{2}O$$
 O_{M}
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{2}O$
 $H_{3}O$
 $H_{4}O$
 $H_{5}O$
 $H_$

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeDiol"):


Telluric Acid Production

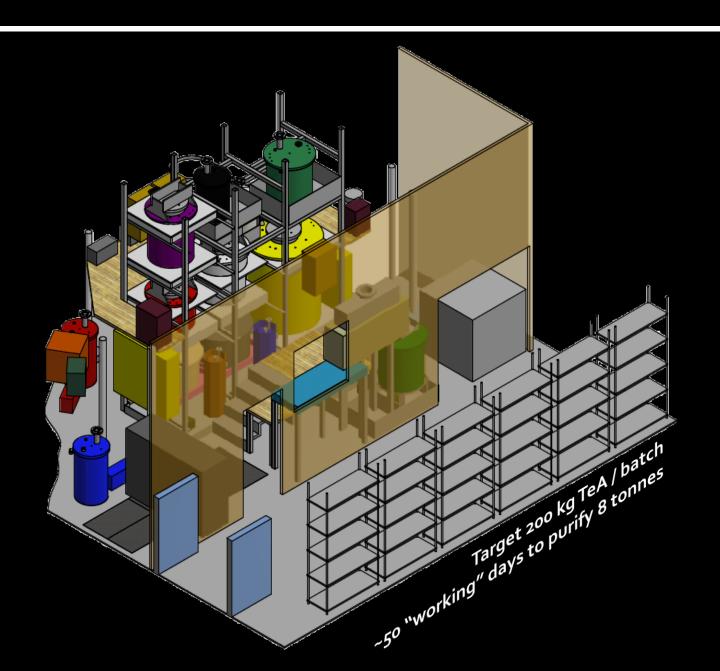
- Te extracted from mine (depth ~ 300 m) in April 2014
 - Visit to the production site prior to start of processing
 - QA/QC tests on samples from each barrel before approval to send to SNOLAB

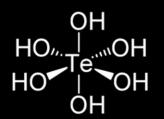

3.8 tonnes of Te(OH)₆, corresponding to ~2.1 tonnes Te, or ~0.26% Te loading

- Shipped to SNOLAB (January 7th 2015)
 - Transported underground on January 19th 2015
 - Testing one sample from one of the barrels to crosscheck previous results

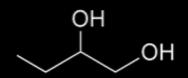
- The purification technique relies on solubility of TeA in water based on pH
 - Te(OH)₆ ←→ Te(OH)₅O⁻ + H⁺ in-soluble soluble
 - Insoluble contamination
 - Dissolve in water, and filter
 - Soluble contamination
 - Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the "dirty" liquid
 - The process can be made tellurium selective


- o.5% Tellurium Target levels:
 - 1.3x10⁻¹⁵ g/g in ²³⁸U (3x10⁻⁸ Bq/kg)
 - 5x10⁻¹⁶g/g in ²³²Th (1.2x10⁻⁹ Bq/kg)
 - (raw Te ~10⁻¹¹ g/g U/Th, 10⁻⁴ Bq/kg)
- Cosmogenic contamination from activation on Te
 - 6°Co, 110mAg, 126Sn, 88Zr, 88Y, 124Sb
 - Rejection needed 10⁴-10⁵



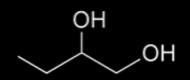

Isotope $t_{exp}=1$ yr $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
²² Na 15309 ²⁶ Al 0.048 ⁴² K 565 ⁴⁴ Sc 102 ⁴⁶ Sc 43568 ⁵⁶ Co 2629 ⁵⁸ Co 25194 ⁶⁰ Co 6906 ⁶⁸ Ga 37343
26 Al 0.048 42 K 565 44 Sc 102 46 Sc 43568 56 Co 2629 58 Co 25194 60 Co 6906 68 Ga 37343
26 Al 0.048 42 K 565 44 Sc 102 46 Sc 43568 56 Co 2629 58 Co 25194 60 Co 6906 68 Ga 37343
42K 565 44Sc 102 46Sc 43568 56Co 2629 58Co 25194 60Co 6906 68Ga 37343
44Sc 102 46Sc 43568 56Co 2629 58Co 25194 60Co 6906 68Ga 37343
46 Sc 43568 56 Co 2629 58 Co 25194 60 Co 6906 68 Ga 37343
⁵⁶ Co 2629 ⁵⁸ Co 25194 ⁶⁰ Co 6906 ⁶⁸ Ga 37343
⁵⁶ Co 2629 ⁵⁸ Co 25194 ⁶⁰ Co 6906 ⁶⁸ Ga 37343
⁵⁸ Co 25194 ⁶⁰ Co 6906 ⁶⁸ Ga 37343
⁶⁰ Co 6906 ⁶⁸ Ga 37343
68 Ga 37343
⁸² Rb 18047
⁸⁴ Rb 11850
⁸⁸ Y 390620
⁹⁰ Y 823
¹⁰² Rh 276189
102m Rh 133848
¹⁰⁶ Rh 1534
^{110m} Ag 69643
¹¹⁰ Ag 939
¹²⁴ Sb 3101138
126m Sb 240
¹²⁶ Sb 358996

10kg pilot-scale
plant operated
successfully
Final design
~200 kg TeA/batch
under construction



The Diol Assay

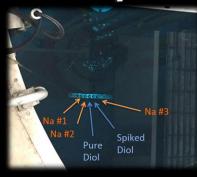
- Identified distributor in Japan, Kowa-Co.
 - High quality and affordable (8 tonnes needed)
 - 14C/12C to confirm its non-biogenic origin
 - Accelerator Mass Spectrometry at uOttawa:
 - Sample #1: (14.3 ± 1.2) x 10⁻¹⁶ Blank #1: (26.0 ± 7.4) x 10⁻¹⁷
 - Sample #2: (4.8 ± 1.2) x 10⁻¹⁶ Blank #1: (2.5 ± 1.2) x 10⁻¹⁷


The André E. Lalonde AMS Laboratory

University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5 Canada

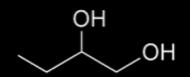
<u>Radiocarbon@uOttawa.ca</u>

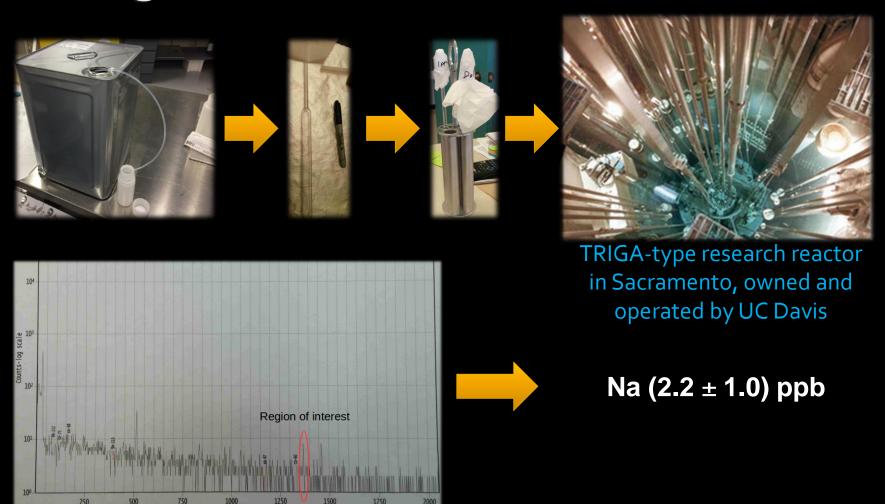
The Diol Assay



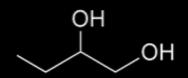
- Gamma-ray spectrometry
 - High Purity Ge (HPGe) detector at SNOLAB
 - ²³⁸U < 3.13 ppb
 - 232Th < 0.26 ppb</p>
 - 4°K < 386.56 ppb</p>

Neutron	Activa	tion	Ana	ysis


- NAA at UC Davis
 - ²³⁸U < 0.3 ppb
 - 232Th < 3.3 ppb</p>


Experiment or Laboratory	Total (2005 - Today)
SNO	11
SNO+	125
SNOLAB	81
EXO	19
MiniCLEAN	56
DEAP	133
HALO	13
PICASSO	9
DM-ICE / DRIFT	23
COUPP / PICO	92
DAMIC	15
NEWS-SNOLAB	1
Total	578
Calibrations & Tests	118

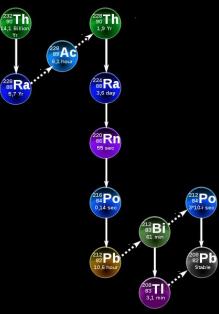
natNa ~ ppm -> a fraction of which is ²²Na


The Diol Assay

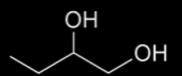
Tracing sodium contamination with NAA

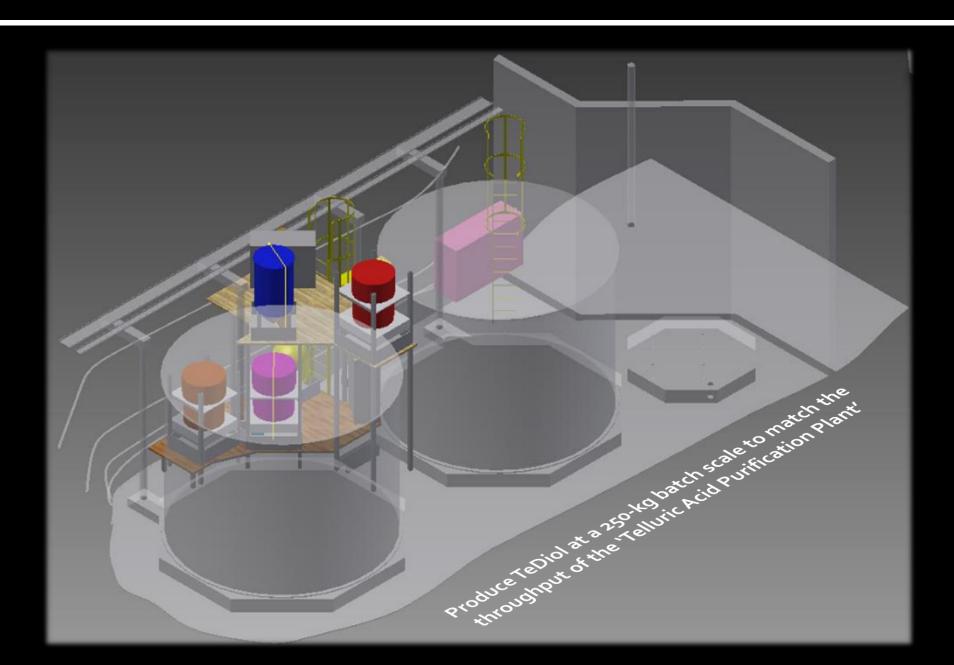
The Diol Purification

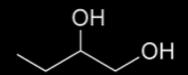
Bench-top distillation with radio spikes


- 228Th spike in 1,2-Butanediol
 - Low T (70 °C, 80 mTorr)

	Initial activity mBq/g	Distillate activity mBq/g	Reduction factor
²²⁸ Th	72	<0.014	>5100
²²⁴ Ra	72	<0.013	>5500

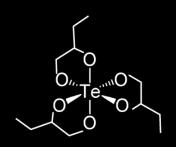

High T (170 °C, 225 Torr)


	Initial activity Bq/g	Distillate activity µBq/g	Reduction factor
²²⁸ Th	1.94	7 ± 1	280 000
²²⁴ Ra	1.94	13 ± 5	150 000



The TeDiol Plant

The TeDiol Plant



Backgrounds Budget

 (α, n)

2νββ

Alpha-capture on ¹³C/¹⁸O Neutrons produced Capture of thermal neutrons Delayed coincidence tag

External y

External y

From AV, ropes, water, PMTs Fiducial volume (20%) cut 50% extra rejection multi-site cuts

Internal U chain

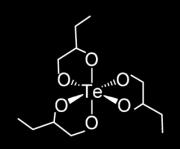
Internal Th chain

⁸B v ES

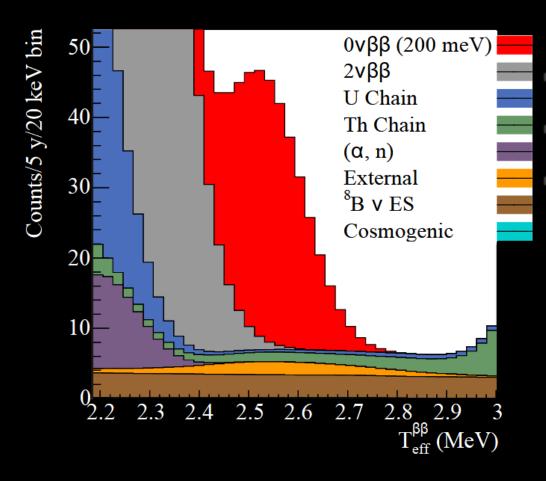
⁸B solar neutrinos: Flat spectrum Constrained by SNO/SK data Limited by resolution

⁸B v ES

Cosmogenic


Cosmogenics

Mitigation: purification + "cool-down" UG < 1ev/yr in RoI-FV Further reduction if needed: multi-site events


Internal U/Th

²¹⁴BiPo, ²¹²BiPo B-α delayed coincidence tagging 100% rejection in Rol In-window trigger: x50 rejection

ονββ Sensitivity

■ 1.3 tonnes of ¹3ºTe in LAB (at 0.5% nat-Te)

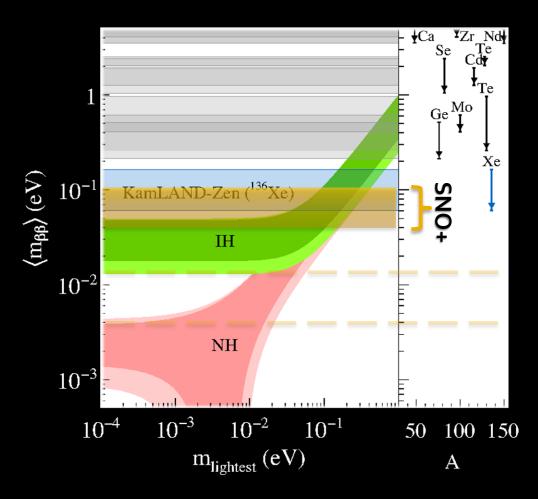
- [-0.5; +1.5] σ around Q_{ββ}
- 400 NHits/MeV (~4% ΔE)
- Fiducial Volume: 20% total

	T _{1/2} [yr] m _{ovßß} [meV		
1 yr	8x10 ²⁵	75.2	
5 yrs	1.96x10 ²⁶	38 – 92	

ονββ Schedule

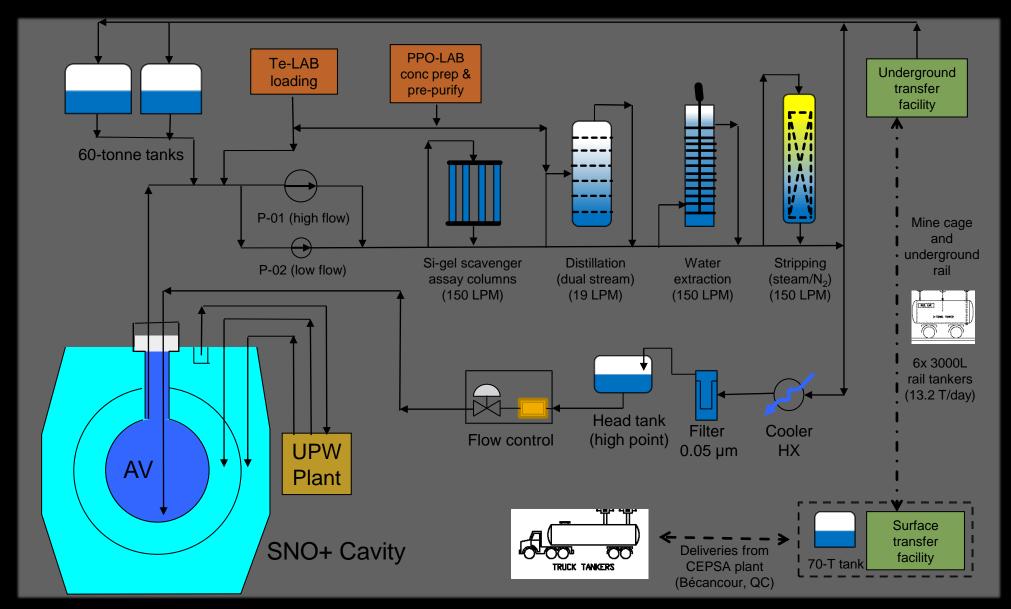
- **2017-2018**
 - Scintillator plant commissioning
 - Scintillator fill
 - Unloaded scintillator phase (short)
 - Evaluation of backgrounds for ουββ
 - Commissioning of the Tellurium plant(s)
- **2018-2019**
 - Tellurium loading
 - Begin ουββ phase

SNO+ Collaboration



Backup

ονββ Sensitivity


1.3 tonnes of ¹³⁰Te in LAB (at 0.5% ^{nat-}Te)

- [-0.5; +1.5] σ around Q_{ββ}
- 400 NHits/MeV (~4% ΔE)
- Fiducial Volume: 20% total

	T _{1/2} [yr]	m _{ovßß} [meV]		
1 yr	8x10 ²⁵	75.2		
5 yrs	1.96x10 ²⁶	38 – 92		

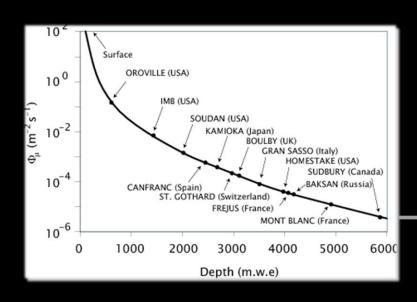
Scintillator Purification Plant

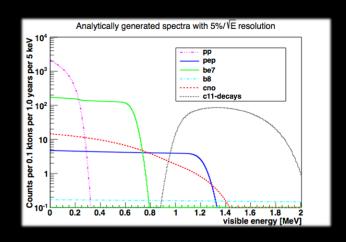
Scintillator Purification Plant

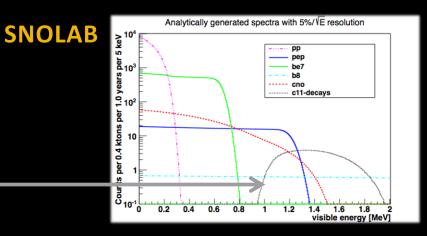
- Multi-stage distillation
 - Dual-stream PPO distillation
 - Removes heavy metals
 - Improves UV transparency
- N₂ / steam stripping
 - Removes Rn, Kr, Ar, O₂
- Water extraction
 - Removes Ra, K, Bi

- Metal scavenging
 - Removes Bi, Pb
- Microfiltration
 - Removes dust

- Target Levels
 - 85Kr: 10⁻²⁵ g/g
 - 4°K: 10⁻¹⁸ g/g
 - 39Ar: 10⁻²⁴ g/g
 - U: 10⁻¹⁷ g/g
 - Th: 10⁻¹⁸ g/g

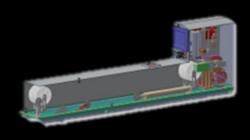

Backgrounds Budget

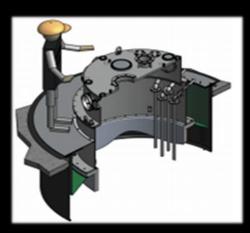

- Current sensitivity studies assume that in the background budget, solar neutrinos would be the dominant factor
 - 2νββ spectrum "leaks" into the ROI [8.5/23.2 c-yr]
 - Improved energy resolution with good optics
 - External backgrounds (208Tl ,214Bi) [3.5/23.2 c-yr]
 - Minimized with proper fiducialisation, and PSD
 - Internal backgrounds and detector response
 - U/Th [3.8/23.2 c-yr] and cosmogenics [0.1/23.2 c-yr] reduced by purification & cooling
 - Bi-Po/(α,n) tagged with space-time coincidence
 - ²¹⁰Po-2νββ/²¹⁰Bi-2νββ pile-up events reduced based on PMThit time distribution
 - Apply the "source-in source-out" approach
 - Flat ⁸B (ES) e⁻ normalized to known flux [7.2/23.2 c-yr]

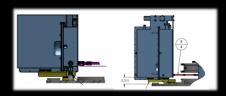

SNOLAB Facility

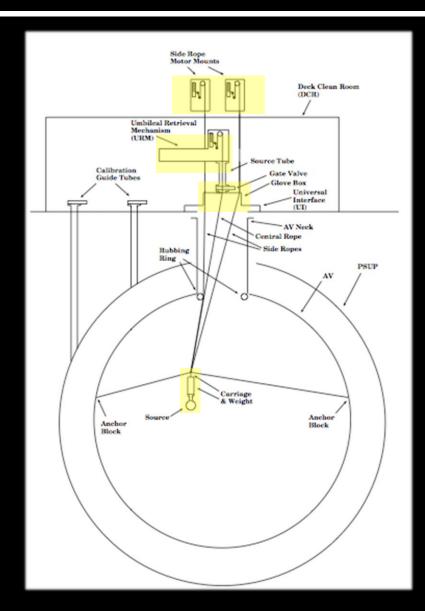
- Depth = 2070 m (6000 m.w.e.)
- **LNGS**

- 60 muons/day in SNO+
- 10,000 sq ft class-2000 clean room



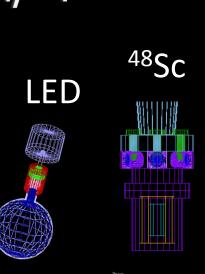


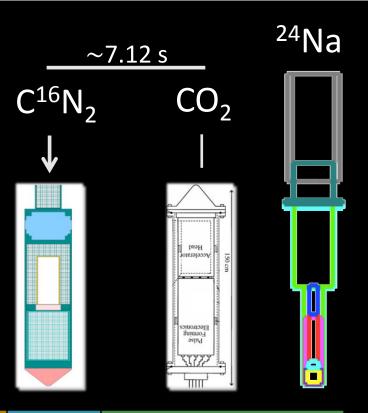



Calibration Hardware

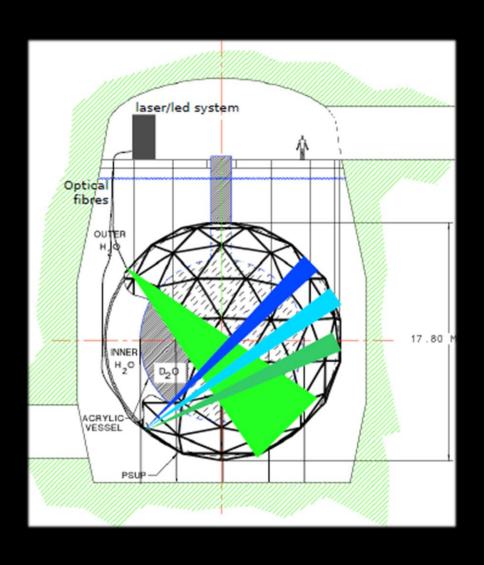
New (Re)Design

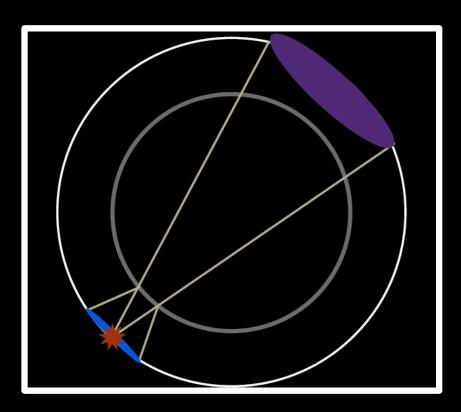
New Technology



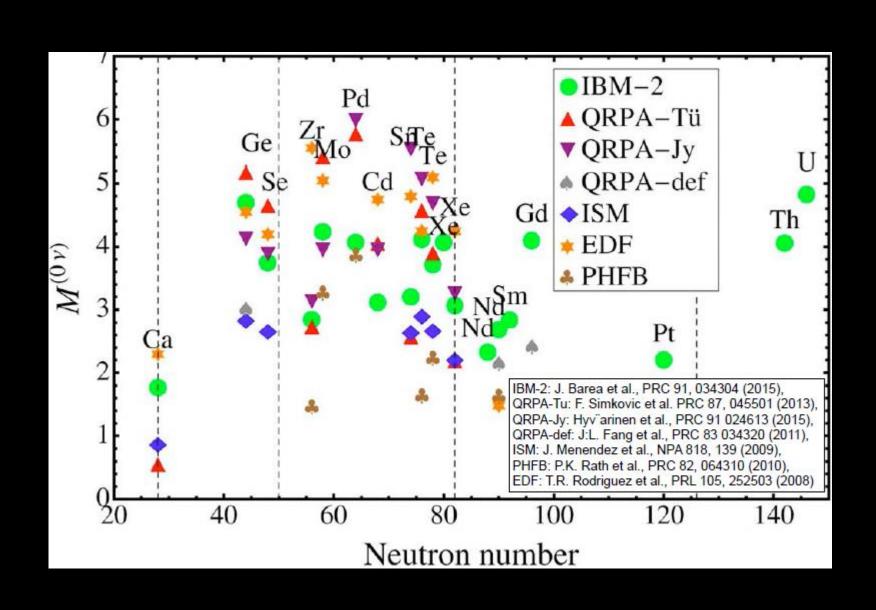


Calibration Sources

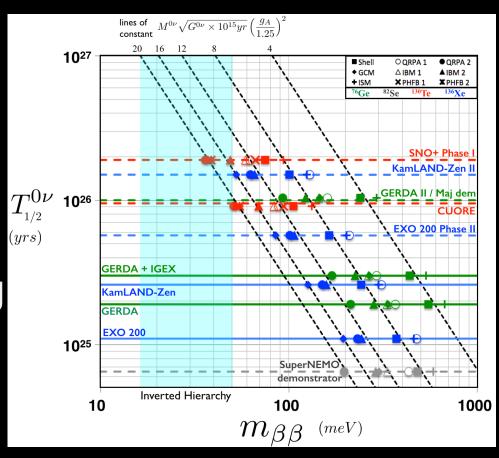

- Need Double encapsulation
 - Limitation for ²²²Rn, ⁹⁰Y
- Radioactive and optical sources α, β, γ, n, with laser injection laserball and Cherenkov



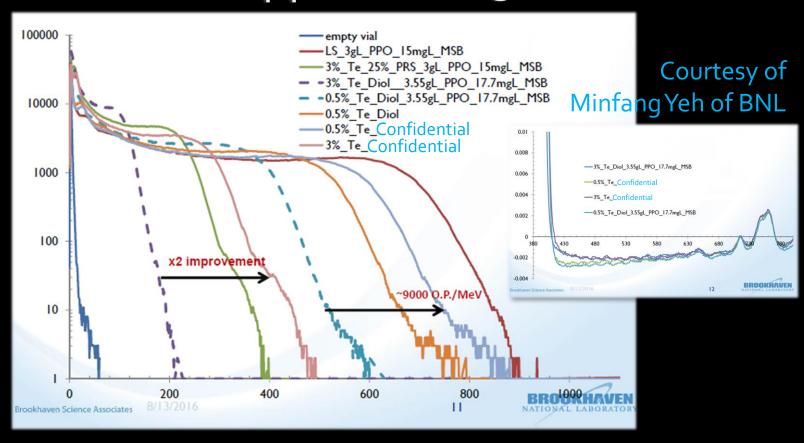
Туре	γ				β	α	n			
Src.	⁵⁷ Co	⁶ °Co	⁴⁸ Sc	²⁴ Na	¹⁶ N	⁹⁰ Y(?)	²¹⁴ Po(?)	n-p	n-12C	n-Fe
MeV	0.1	2.5 (sum)	3.3 (sum)	4.1 (sum)	6.1	2.3	7.7	2.2	4.9	~7.5


Optical Calibration

Light emitted from the support structure from 92 fibres installed between PMTs. Each gives 10E³-10E⁵ photons/pulse.


ονββ Isotope Selection

ονββ Sensitivity in Phase II


- Improve sensitivity by improving
 - Light yield and going to higher loading
 - Improve current technique
 - Higher QE PMTs
 - Improved concentrators
 - Coverage to 80%
- Goal: 3% nat. Te loading
 - ~ 8 tonnes ¹³⁰Te
 - Higher QE PMTS
 - $T_{1/2}$ onbb ~ 10^{27} yr

ονββ Phase III R&D

 2x the Light Yield and same absorption with alternative approach at 3%Te

