

Simulations of the Muon Veto for the PICO Experiment

Olivia Scallon

2017 CAP Congress / Congrès de l'ACP 2017

May 30, 2017

The PICO experiment

to hydraulic controller

Detection Principles: Physics

Backgrounds

 ${\sf Cosmic\ Rays}: {\sf SNOLAB}$

- 2 km underground (6010 MWE shielding)
- Class-2000 cleanroom

Physics and Backgrounds

Cosmic Muons

- Muons induce high energy neutrons.
- Muon flux in SNOLAB : 3.77×10^{-10} $cm^{-2}sec^{-1}$
- Detector surrounded by a muon veto

Physics

Muons travelling faster than the speed of light in water produce Cherenkov radiation.

$$n = 1.33$$
 for water

$$cos(\theta) = \frac{1}{n\beta}$$

$$\beta = v/c$$

number of optical photons produced :

$$N=2\pilpha Z^2 extstyle sin^2(heta)\left(rac{1}{\lambda_1}-rac{1}{\lambda_2}
ight)L$$

Geant4 Technicalities

- Full simulation of the already existing veto for PICO-60
- Goal: optimize a geometry for the future veto for PICO-500.

Geant4.10.03

Particles :

- G4OpticalPhoton
- G4Meson
- G4Boson
- G4Baryon
- G4lon

Processes:

- G4Cerenkov
- G4OpBoundaryProcess
- G4Scintillation
- G4OpAbsorption
- G4OpRayleigh

Detector Geometry

- Water (UPW)
- Water Tank
 3.6m, d=2.8m, thickness=5cm
- PVC liner (C_2H_3CI) density 1.35 g/cm³
- Pressure vessel
 Stainless Steel 302, density=8.03*g/cm³
- TYVEK cover

Scoring - Optical Photons Counting

 $3m \times 3m$ scoring mesh with $1cm \times 1cm$ bins on top of the water tank.

Geant4 SNOLAB Muon Source

D.-M. Mei, A. Hime. Muon-Induced Background Study for Underground Laboratories.

The energy spectrum :

$$rac{dN}{dE_{\mu}} = Ae^{-bh(\gamma_{\mu}-1)}[E_{\mu} + \epsilon_{\mu}(1-e^{-bh})]^{-\gamma_{\mu}}$$

With A the normalization constant with respect to the differential muon intensity at a given depth h, E_{μ} the muon energy after crossing h. $b=0.4/\mathrm{km.w.e.}, \ \gamma_{\mu}=3.77$ and $\epsilon_{\mu}=693$ GeV.

The muon angular distribution

$$I_{th}(h,\theta) = \frac{I_1 e^{\left(\frac{-h_0}{\lambda_1 \cos(\theta)}\right)} + I_2 e^{\left(\frac{-h_0}{\lambda_2 \cos(\theta)}\right)}}{\cos(\theta)}$$

vertical depth h_0 , zenith angle θ , $l_1 = (8.60 \pm 0.53) \times 10^{-6}$ sec $^{-1}$ cm $^{-2}$ sr $^{-1}$, $l_1 = (0.44 \pm 0.0) \times 10^{-6}$ sec $^{-1}$ cm $^{-2}$ sr $^{-1}$, $\lambda_1 = 0.45 \pm 0.01$ km.w.e. $\lambda_2 = 0.87 \pm 0.02$ km.w.e.

Muon Energy Spectrum :

Muon Angular Distribution :

Modelling The Muon Source: Angular distribution

- All muons must hit the detector to reduce computer time.
- Initial position of particles is set as a 8m diameter half dome around the detector.
- Initial momentum is set as "towards center of bottom of detector".

$$I_{th}(h, heta) = rac{I_1 e^{(rac{-h_0}{\lambda_1 cos(heta)})} + I_2 e^{(rac{-h_0}{\lambda_2 cos(heta)})}}{cos(heta)}$$

vertical depth h_0 , zenith angle θ , $I_1 = (8.60 \pm 0.53) \times 10^{-6} \text{ sec}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}$ $I_2 = (0.44 \pm 0.0) \times 10^{-6} \text{ sec}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}$ $\lambda_1 = 0.45 \pm 0.01$ km.w.e. $\lambda_2 = 0.87 \pm 0.02$ km.w.e..

$cos(\theta)$ (arbitrary units):

Modelling The Muon Source: Energy distribution

$$rac{dN}{dE_{\mu}}=Ae^{-bh(\gamma_{\mu}-1)}[E_{\mu}+\epsilon_{\mu}(1-e^{-bh})]^{-\gamma_{\mu}}$$

A the normalization constant with respect to the differential muon intensity at a given depth h, E_{μ} the muon energy after crossing h. $b=0.4/\mathrm{km.w.e.}$,

$$\gamma_{\mu}=$$
 3.77 $\epsilon_{\mu}=$ 693 GeV

Results for the PICO-60 Veto (bottom and top scoring meshes)

Results

Optical Photon Energy

- Area of PMTs vs water tank $\sim 3.74\%$
- ullet Total photons detected $\sim\!$ 448 photons per muon.

Future Veto for PICO 500

Next Steps

A geometry for a pico500 muon veto has been implemented in Geant4.

- Run simulations on SHARKNET (desktop computer takes \sim 10h per muon)
- Extract Scoring Meshes to optimize placement of PMTs
- Try other geometries (spherical, cylindrical...)
- Test different reflectivities of tyvek and bottom of tank to maximise photon counting

Future Veto for PICO 500

Thank you for attending!

