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T2K (TOKAI TO KAMIOKA) EXPERIMENT
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DISCOVERING LEPTONIC CP VIOLATION 3
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T2K Phase-Il will be sensitive to maximal CP violation at the 3o level.
Hyper-K will be sensitive at 5o over a range of values of §¢p.

Future long baseline experiments will be limited by systematic rather
than statistical uncertainties.



MEASURING NEUTRINO ENERGY

4
M. Martini NuFACT 2015 .
Multi-nucleon effects.
4 Genuine CCQE
u NI Hadronic state not reconstructed.
\ O N
@ Must assume mass of recoiling hadrons.
+ A . : : :
V W - Problematic due to multi-nucleon interactions.
\_ N %
\ Explains larger axial mass preferred by MiniBooNE over NOMAD.
/T\LAIIO particles:]\'/vo h(;\lle's (2p-2h) Further missing hadronic energy from unseen pions.
A A D) Both effects lead to energy underestimation.
W+ A A @ D Many different multi-nucleon models - hard to separate experimentally.
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THE NUPRISM EXPERIMENT

» An intermediate water Cherenkov detector.

»

>

» 50 m tall and 1 km downstream of neutrino beam.

4

Same nuclear target and acceptance as the far detector.

Smaller near to far extrapolation systematic.

Detector moves through cylindrical chamber.
Inner detector: 8 m diameter, 10 m tall.
Outer detector: 10 m diameter, 14 m tall.

Tank is lined with multi-PMT (mPMT) modules.

Spans 1-4 degrees from the
neutrino beam axis.

Probes neutrino energy vs final
state kinematics relationship.

Gd loading to measure neutron
production.

MULTI-PMT
MODULES



NUPRISM CONCEPT :
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NUPRISM CONCEPT

» Take linear
combinations of
different 60
different off-axis

angle slices.
Noa

F(E,) = Z Ciq)Zf,i(EV)
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NUPRISM CONCEPT 3
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» Create a neutrino flux of -
interest e.g. Gaussian.
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» Sum the observed events .. |
to give the expected event ..
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» Helps to constrain neutrino
cross-section models.




PSEUDO-MONOCHROMATIC BEAMS

—— Gaussian Fit
Fit Mean: 1.14 GeV

Fit RMS: 0.21 GeV
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Simulated reconstructed energy distribution for single muon candidates after
applying the 1.2 GeV linear coefficients.

Separation of QE and non-QE (including multi-nucleon) scatters.

Directly predict the effect of non-QE scatters in oscillation measurements and
provide a unique constraint on nuclear models.

Cross-sections as function of true neutrino energy.

Measure vs true observables Q?and w - variables controlling interaction mode.



MUON NEUTRINO DISAPPEARANCE
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Super-K Flux
vPRISM Flux Fit
Am252=2.4le-3
sin?023z=0.5
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Instead of monochromatic beams, use a linear combination to produce an

oscillated flux.
Off-axis bins

q)SKPZ/pJ—H/H(EV;HQZ%Am%Q) — Z

)

ci(023, Am3y) 7" (Ey)

Can reproduce oscillated flux between ~400 MeV and 1.2 GeV.

Directly measure muon p-theta for given oscillation parameters.

For each oscillation hypothesis we want to test, we find a linear combination of
the NuPRISM off-axis fluxes to give the oscillated spectrum.



Events

MUON NEUTRINO DISAPPEARANCE 1

. Oscllated SK events Measured NuPRISM event rate:
- Measured NuPRISM events
3.5 - NuPRISM acceptance correction Off—axis bins

- Fitted flux difference correction
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» Red: Directly measured NuPRISM events in far detector prediction.

» Green: Non-CCOn background subtracted at NuUPRISM and re-added at SK with significant
cancellation.

» With matched fluxes:

» NuPRISM linear combination event rate the same as oscillated SK event rate.

» Directly compare NuPRISM measurement to observed SK events to obtain oscillation parameters.
» NuPRISM and SK have the same interaction material - same interaction cross-section.

» No cross-section model, no effect from wrong model choice.



PHASE 0

» Instrumented portion of phase 1 is placed in a
water tank near ND280.

» Allows us to demonstrate detector/calibration
precision.

» Provides a test detector for Hyper-K R&D.

» Physics goals:

Beam angle at 8.2 m elevation [deg]
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» Measure o(v.)/0o(v,) to ~3% precision.

> Expe2c1t ~5500 . events below 1 GeV in
1x10 POT with 76% purity.

» Gd loading to measure neutron
multiplicities in neutrino-nucleus
interactions.

» A range of locations being studied.
» Optimise flux uncertainties and flux ratios.

» Investigating feasibility of construction.
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MULTI-PMT (MPMT) R&D

Modular approach to PMT instrumentation.

Array of small (~3") PMTs rather than one large
one.

Waterproofing, pressure protection, reduced
cabling.

Readout electronics, monitoring, calibration
devices located in vessel.

Directional information - improved vertex
resolution.

Leveraging lessons learned from KM3NeT/IceCube |

mPMT design.

Mechanical design (TRIUMF, Toronto).

Optical characterisation of PMTs, acrylic, etc. (Toronto,

York, Alberta, TRIUMF).

Electronics development (TRIUMF, Warsaw UT,
Michigan State) .

Ongoing studies of support structure, acrylic vessel
engineering, reflector assembly, optical gel, etc.
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PROJECT STATUS
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2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

FY2017 FY2018 FY2019 FY2020 FY2021 FY2022 FY2023 FY2024 FY2025 FY2026

T2K/T2K-1I
Hyper-K
NuPRISM Phase-0
'NuPRISM Phase-1

mPMT Prototype
mPMT Design

mPMT Production
'Phase-0 Facility Design
Facility Construction
Tank Design

Tank Construction -

Detector Installation | |

Design

| Construction 7

Operation

» J-PARC PAC Stage 1 status granted in July, 2016.
» Stage 2 requires Technical Design Report - aim to complete by November 2017.
» First chance for full approval at the January 2018 PAC meeting.
» Plan to take 2 years of Phase 0 data starting 2021.
» Phase 0 start driven by mPMT development and construction.
» Aim to take Phase 1 data ~3 years after Phase O start.

» Data taking for last 2-3 years of T2K-Il run.




BACKUP SLIDES. ..

15




CURRENT T2K SYSTEMATIC ERRORS 16

» Systematic uncertainty at the 6% level. Need reduction to ~3% level for Hyper-K.

Source of uncertainty prlike 6 Homode ) / (#rmode) | e.like §( umode) / ((#romode)
SKDet 0.07% 1.6%
FSI+4-SI 2.6% 3.6%
Flux 1.8% 1.8%
Flux+XSec (ND280 constrained) 1.9% 2.2%
XSec NC other (uncorr) 0.0% 270
XSec NC 14 (uncorr) 0.0% 1.5%
XSec v, / v, (uncorr) 0.0% 3.1%
Flux+XSec 1.9% 1%
All 3.2% 5.8%

» CP violation measurement depends on uncertainty of v, /U, ratio.

» Dominant uncertainties:

» Final state interactions (FSI) and secondary interactions (Sl) - nuclear model
extrapolated from pion-nucleus scattering experiments.

» Electron/muon neutrino cross-section ratio - need data in energy range of interest,
low statistics and large background for electron samples.

» ND280 flux + cross-section constraint - affected by nuclear model uncertainties.



MULTI-NUCLEON MODELS
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M. Martini NuFACT 2015

l

Nieves et al.

Full Model
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Martini et al. and Nieves et al. calculations are both consistent with MiniBooNE

data within the MiniBooNE flux uncertainties.

The np-nh contributions can differ by a factor of 2 in the region of interest.

Predict different rates for neutrinos vs anti-neutrinos.

Hard to separate models experimentally.



NEAR DETECTOR CONSTRAINT

Oscillations result in different fluxes at the near and far detectors.

Causes issues constraining interaction model that predicts far detector event rates.

%10° Multinucleon Feed-down, ND280 Flux «1 03 Multinucleon Feed-down on Oscillated Flux
o 1000 0 '~ o 40T "]
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200:— —: 20; _f
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Detectors measure convolution of neutrino flux with interaction model.
Measurement of near detector does not directly constrain far detector event rate.

Smearing of neutrino energy a relatively small effect at the near detector but
significantly impacts measurement of oscillation parameters.

Different acceptances causes further issues.
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T2K analysis 1200
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EFFECT OF MULTI-NUCLEON CROSS-SECTION MODELLING

0.1
I ! )
ooooo | in%8,, - Nieves sin’0,,

T2K study of sin® #53 uncertainty
from mis-modelling the 2p-2h part
of the cross-section found a
significant bias and uncertainty.

Same study is carried out using
NuPRISM near detector fit.

SK event rate is accurately predicted
even with additional 2p-2h
interactions added to the toy data.

The sin® f,5 bias and uncertainty are
reduced to ~1% with the NuPRISM
measurement.

NuPRISM analysis largely
independent of cross-section model.



