Detecting Antineutrinos Using the SNO+ Detector

PAWEL MEKARSKI
CAP CONGRESS 2017
MAY 31, 2017

Antineutrino Interaction

Added motivation

Added motivation

Added motivation

SNO+ Detector

Consists of:

12 m diameter acrylic sphere

9300 photomultiplier tubes (PMTs)

7000 tonnes of surrounding water

Will be filled with **780 tonnes** of liquid scintillator

 Also 3.9 tonnes of natural tellurium

$$\bar{\nu}_{\rm e}$$
+ p \rightarrow e⁺ + n

$$\bar{\nu}_{\rm e}$$
+ p \rightarrow e⁺ + n

Simulation – Antineutrino Search

Two Monte Carlo simulations:

5000 years of data taking

All expected backgrounds

214Bi
8Tl
212Po
212Po
40K

60 minutes of data taking

Reconstructed position

Selection Criteria

First **remove** events that occur near or past the surface of the spherical vessel (more radioactivity here)

Impose a fiducial volume cut (FV)

Reconstructed position

Selection Criteria

First **remove** events that occur near or past the surface of the spherical vessel (more radioactivity here)

Impose a fiducial volume cut (FV)

Radius r < 5.5 m

Selection Criteria – Cont'd

See that these signal events have correlations between them

Next, **keep** only event pairs that occur within a specific **time interval** of each other

Coincident events

Next, **keep** only event pairs that occur within a specific **time interval** of each other

Coincident events

Time difference Δt < 500 μs

Time difference between subsequent

Third, **keep** only coincident events that occur within a short distance from each other

Third, **keep** only coincident events that occur within a short **distance** from each other

Position difference d < 2 m

Implications

Imposing this criteria:

- Reduces signals from IBD events
- But greatly reduces signals from radioactive backgrounds

Realistically, only expect to have approx.

1 IBD decay event left in our data set after these cuts are applied

 Assuming current data collection in water for 6 months

More than likely, there will be many more background coincidences, drowning the signal

Conclusions

But...

By looking at this in Monte Carlo and in 'water phase' data:

- We can develop the tools needed to search for IBD signals
- Begin optimizing the techniques that pull out the signal from the data collected
- Better understand the backgrounds that mimic this signal

We are set up well for a measurement of antineutrinos when 'scintillator phase' begins (scheduled: Late 2017)

Back-up Slides

Neutrino Oscillation

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \sin^2(2\Theta) \sin^2(1.27 \Delta m^2 [eV^2] \frac{L [km]}{E [GeV]})$$

