

Félix Lége

Project Overview ATLAS New Sm Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Ever Analysis Cosmic Ray Even

Backup Slides

Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

Félix Léger Supervisors: Steven H. Robertson & Andreas Warburton

> Department of Physics McGill University

May 30 2017

Outline

Félix Léger

Project Overview ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Ever

Analysis Cosmic Ray Event

Backup Slides

Project Overview

- ATLAS New Small Wheel Upgrade Project
- McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector

- Definitions
- Multi-Cluster Event Analysis
- Cosmic Ray Event Categorization

ATLAS New Small Wheel Upgrade Project

Félix Léger

Project Overview

ATLAS New Small Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Even Analysis Cosmic Bay Event

Cosmic Ray Event Categorization

Backup Slides

- Motivation: (Run-1) High µ fake rate in forward region of ATLAS ⇒ New detector needed for triggering Run-3 (see I. Trigger's talk)
 - Current Small Wheel (SW) uses Thin Gap Chamber (TGC) detectors
 - Small-strip Thin Gap Chambers (sTGC) technology developed for New Small Wheel (NSW)
 - Canada involved in production of 1/4 of the sTGC

Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

Félix Léger

Project Overview

ATLAS New Small Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Even Analysis Cosmic Ray Event Categorization

Backup Slides

- Wires [x axis]
 - Wire pitch: 1.8 mm
- Strips [y axis]
 - Strip pitch: 3.2 mm
- Pads [xy axis]
 - Laid in tiles
 - 28 channels on layers 1, 3
 - 40 channels on layers 2, 4
- Z axis: 4 layers (quadruplet)

McGill sTGC Testbench

Félix Léger

- Project Overview ATLAS New Sm Wheel Upgrade Project McGill sTGC Testbench
- Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis Cosmic Ray Event Categorization
- Backup Slides

 3D data available from detector, but my study only uses 2D information for tracking (strips, layers)

- McGill responsible for quality assurance / performance characterization of Canadian sTGC modules
- Goal: measure hit efficiency and spatial resolution of sTGC planes
- Relies heavily on track reconstruction: my project is to better understand the nature of Cosmic Ray events recorded by sTGC quadruplet through track reconstruction

40x60 cm² sTGC Prototype

Félix Léger

- Project Overview ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench
- Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis Cosmic Ray Event Categorization
- Backup Slides

McGill currently uses an ATLAS sTGC prototype to validate quality control measurements

- Designed by Weizmann Institute Group
- Built by sTGC Canadian Group (TRIUMF & Carleton U) in Israel
- Tested at Fermilab
 - ▶ (▶ NIM A817 (2016) 85-92

McGill sTGC Testing Lab

Félix Lége

Project Overview ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis Cosmic Ray Event

Backup Slides

- Gas System provides n-pentane:CO₂ mixture of 45%:55% by volume
- Slow Control system in place to ensure lab safety
- McGill group published paper to JINST about development and characterization of these two components:

▶ JINST 12(04):P04027, 2017

WIGH Cosmic Ray Detection

Definitions for Multi-Cluster Track Analysis

Motivation for Multi-Cluster Event Analysis

Félix Léger

Project Overview ATLAS New Smal Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector

Multi-Cluster Event Analysis

Cosmic Ray Event Categorization

Backup Slides

- Current sTGC analysis algorithm only does tracking using layers with at most one cluster
- We find that ~ 4% cosmic muons produce ≥ 2 clusters in at least one of the layers
- Want to categorize multi-cluster events to know what we throw out of the analysis
 - ≥ 2 muons
 - delta-ray
 - spurious hits / false signals / other

Tracking Algorithm

Félix Léger

- Project Overview ATLAS New Sm Wheel Upgrade Project
- Analysis of Cosmic-Ray Data with a sTGC Detector

Definitions

Multi-Cluster Event Analysis

Cosmic Ray Event Categorization

Backup Slides

- Current algorithm for multi-tracking is the following:
 - Separate clusters with 2 maxima into two individual clusters (if need be)
 - Try every possible combination of hits in an event to form a track containing a hit on every layer
 - Compare every track that contains 2 common hits and keep the track with smallest χ^2
 - For tracks with a common cluster, re-fit excluding this cluster.

Different Event Categories (1/3)

These events are used for efficiency and resolution measurements for the sTGC

Different Event Categories (2/3)

These events are not used for sTGC characterization

Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

Different Event Categories (3/3)

Project Overview ATLAS New Sm Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis Cosmic Ray Event Categorization

Backup Slides

These events are not used for sTGC characterization

Categorization of Cosmic Ray Events

Félix Léger

Project Overview ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis

Cosmic Ray Event Categorization

Backup Slides

 Categorizing events provides better understanding of data composition and event reconstruction

$\sim 480000 \text{ events}$

Summary and Outlook

Félix Léger

- Project Overview ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench
- Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Even Analysis

Cosmic Ray Event Categorization

Backup Slides

- Testing facility physically located at McGill now fully operational, currently uses 40x60 cm² sTGC prototype
- The analysis of cosmic muon data is functional, extended the code to include multi-cluster tracking
- This process was useful to develop a better understanding of the sTGC data and to improve the track reconstruction
- First sTGC modules are expected to arrive at McGill during the summer

Thanks!

Canadian sTGC Production

Félix Léger

Project Overview ATLAS New S

Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis Cosmic Ray Event Categorization

Backup Slides

STGC Data Acquisition

Félix Léger

- Project Overview ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench
- Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis

Cosmic Ray Event Categorization

Backup Slides

- Currently using first generation prototype of front end electronics (VMM1 ASIC)
 - 8 chips available (64 readout channels each) with associated interface cards for digitization and data formatting

- Cosmic data processed for event building and data quality into ROOT trees
 - Same format as Fermilab testbeam 2014 (same electronics)
 - Main analysis package applies channel mapping and cuts, performs strip channels clustering and tracking, and finally computes various efficiencies and resolutions
 - Extensively used and tested, stable since May 2016
 - Will use VMM2 instead of VMM1 for testing at McGill

Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

Cluster with 2 Maxima Separation Algorithm Demo

Félix Léger

Project Overview

ATLAS New Sma Wheel Upgrade Project McGill sTGC Testbench

Cosmic-Ra Data with a sTGC Detector

Multi-Cluster Ev Analysis

Cosmic Ray Event Categorization

Backup Slides

Before and after algorithm. Notice the cluster in the [120-140]mm range is continuous, but contains 2 bumps.

Giuster Cleaning Cuts

Félix Léger

Project Overview ATLAS New Smal Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis

Cosmic Ray Event Categorization

Backup Slides

Before applying multi-tracking algorithm, these cuts are applied on clusters (strips, y-axis):

- Cluster must contain \geq 3 strip hits
- Cluster cannot "touch" either extremity of the strips layer
- The leftmost and rightmost strip hits of a cluster cannot contain the peak

Categorization of Multi-Cluster Events

Same figure as previous pie chart, but includes events where tracking failed 10⁶ events < 3 lavers with hits before cluster cut < 3 layers with hits after cluster cut Enough layers with hits, no track 41.3% Single cluster event, 1 track, 3 layers Single cluster event, 1 track, 4 lavers Double cluster event, 1 track 2 tracks > 3 tracks 10.7% 0.1 % % 15.9°00 **Backup Slides** 29.1 %

♥ MGIII # Tracks VS # Clusters

Félix Lége

Project Overview ATLAS New Smit Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Event Analysis Cosmic Ray Event Categorization

Backup Slides

Relation between number of tracks and clusters for different layers

- The number of tracks roughly follows the number of hits on a layer
- Events with high number of tracks are rarer
- Statistics look similar on different layers
- \Rightarrow follows expectations

Comparison with Simulation

Félix Léger

Project Overview ATLAS New Smal Wheel Upgrade Project McGill sTGC Testbench

Analysis of Cosmic-Ray Data with a sTGC Detector Definitions Multi-Cluster Ever Analysis Cosmic Ray Even Categorization

Backup Slides

Very preliminary results, work in progress

Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes