Search for Higgs production in association with a top quark pair in the H->bb final state

Daniel Mori

May 30, 2017

Introduction

- LHC and ATLAS
- Higgs Production
- $ttH \rightarrow bb$ semileptonic channel
- Matrix Element Method
- MVA Techniques

LHC and ATLAS

- Large Hadron Collider
- 27 km circumference
- Proton beams colliding at 13 TeV centre-of-mass energy

- "A Toroidal LHC ApparatuS"
- 25m diameter x 46m length, 7000 tonnes
- 3000 physicists, 180 institutions involved

Higgs Production

- ggF, VBF, associated production, ttH
- ttH fourth highest Higgs production cross-section
- Direct measurement of Higgs-top Yukawa coupling

• $b\overline{b}$ decay mode maximizes XS x BR for ttH

ttHbb

- $t\bar{t}H \rightarrow b\bar{b}$ semileptonic channel
 - 2 b quarks from Higgs
 - 2 b quarks from top decay $t \rightarrow Wb$
 - 1 leptonic W decay lepton + neutrino
 - 1 hadronic W decay 2 light jets
- Main background $t\bar{t} + b\bar{b}$
 - Higgs replaced by gluon
 - Similar kinematics
- Combinatoric Background
 - Which b-jets are from Higgs decay?

Olaf Nackenhorst, CERN-THESIS-2015-186

Previous Results

- Tiny signal compared to background
- Run 1 Matrix Element Method with Neural Network
- ICHEP Reconstruction and Classification BDTs

Matrix Element Method

 Likelihood that event was produced by a specific process

Matrix Element

 Theoretical description of signal or background process

Parton distribution function

Accounts for initial collision

Transfer functions

- Maps detector response to event level
- Quarks undergo parton shower, hadronization \rightarrow jets

 $P_{t\bar{t}H}(\vec{x}_{\text{Detector}}, m_H)$

probability

Using MEM

- Likelihood calculated for $t\bar{t}H$ and $t\bar{t}b\bar{b}$ processes
 - Discriminating variable $D_1 = L_{t\bar{t}H}/L_{t\bar{t}b\bar{b}}$
- Computationally demanding
 - 7D integration over jet energies, neutrino p_z
 - Monte Carlo integration VEGAS
 - Implementation can run on CPUs or GPUs
- 12 different b-jet assignment for b quarks
 - Use sum of likelihoods for all permutations

MEM Inputs

- 1 Lepton
 - Assume well-measured in detector (δ -function TFs)
- 1 Neutrino
 - $\vec{p}_T = -\Sigma \vec{p}_T$ of final state particles
 - Integrate over p_z (or solve assuming on-shell W)
- Quarks
 - b quarks: 4 highest p_T b-tagged jets
 - Light quarks: 2 remaining jets that minimize $|m_W m_{jj}|$
 - Jet directions assumed well-measured
 - TFs to constrain integration over parton energy Initial state partons
 - Assume aligned with beam axis
 - Solve for E, p_z with final state $\Sigma E, \Sigma p_z$

Transfer Functions

- PDF for parton energy for given jet energy
- Double Gaussian or Crystal Ball function
- Parameters dependent on E_{jet}
- Different TFs for b-jets, light jets

$$CB(E_j, E_p) = N \cdot \begin{cases} \exp\left(-\frac{x^2}{2}\right) & x \le \alpha \\ A \cdot (B+x)^{-n} & x > \alpha, \end{cases} \qquad X = \frac{E_p - E_j - \mu}{\sigma} \qquad C = \frac{n}{|\alpha|} \cdot \frac{1}{n-1} \cdot \exp\left(-\frac{|\alpha|^2}{2}\right) \\ A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right) \qquad D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right) \\ B = \frac{n}{|\alpha|} - |\alpha| \qquad N = \frac{1}{\sigma(C+D)} \end{cases}$$

Transfer Functions

15

10

1.0

0.9

0.8 0.7

♂ 0.6

0.5 0.4 0.3

-5 -50 0

z,

- Match quarks to jets
 - $\Delta R < 0.3$
- Fit 10 GeV *E*_{jet} slices
- Fit resulting parameters to E_{jet}

$$CB(E_j, E_p) = N \cdot \begin{cases} \exp\left(-\frac{x^2}{2}\right) & x \le \alpha \\ A \cdot (B+x)^{-n} & x > \alpha, \end{cases}$$

 $\mu = 14.65 + 0.06293E_j - 1.976\sqrt{E_j}$ $\sigma = 6.184 + 0.09858E_j - 0.4842\sqrt{E_j}$ $\alpha = 0.2938 - 0.001944E_j + 0.06344\sqrt{E_j}$ n = 4.867

Ep 30-40 GeV

Ep 40-50 GeV

Ep 50-60 GeV

Ep 60-70 GeV

TF Validation

S (train)

B (train) S (test)

B (test)

0.5

0.4

MEM BDT

- Boosted Decision Trees outperform Neural Network from Run 1
- MEM in BDT to increase sensitivity
- 9 Kinematic variables
 - e.g., ΔR_{bb}^{avg} , $M_{bb}^{\min \Delta R}$, $\Delta \eta_{jj}^{\max \Delta \eta}$
- Can combine with other MVA techniques
 for greater separation

2.5

0.0

0.0

0.1

0.2

0.3

BDT score

17.5

ATLAS Work in progress

Comparison to previous results

- ROC curve
 - Sig vs bkg fraction remaining after continuous cuts on BDT
- Similar separation power to baseline from ICHEP
- Improvement when combined

Status and Outlook

ATLAS-CONF-2016-068

- MEM performs as well as other MVA techniques
- Motivated by theory
- Can be combined to increase performance
- Working on result for 2015-2016 data
- Expect evidence for ttH in combination with all decay channels by end of 2017

Thank You

