³He neutron detectors in Belle II

Caleb Miller , Samuel de Jong , Micheal Roney

University of Victoria

CAP 2017

May 29, 2017

Introduction

Motivation

- SuperKEKB
- Understanding Simulation with BEAST II
- \blacksquare ³He as a neutron detector
- Phase 1 commissioning of SuperKEKB
 - Beam Gas and Touschek Scattering
 - Calibration of ³He tubes
 - Implications for Belle-II
- Phase 2 commissioning of SuperKEKB
 - Plans and status

Motivation

- \blacksquare SuperKEKB will deliver e^+e^- collisions with 10.58 GeV COM energy
 - e^+ at 4 GeV
 - e^- at 7 GeV
- The luminosity goal of SuperKEKB is $8 \times 10^{35} cm^{-2} s^{-1}$
 - 40x the luminosity of KEKB

Commissioning of the accelerator will take place in three separate phases

- Phase 1: Beam gas and Touschek studies, no collisions (Completed 2016)
- Phase 2: Collisions begin with Belle-II in place, no vertex detectors (February 2018)
- Phase 3: Vertex detectors installed, Physics runs begin (Late 2018)
- Simulations for the running of Belle II and SuperKEKB were made with a combination of SAD and GEANT4
 - SAD: Strategic Accelerator Design

Motivation

- During the running of Belle II high energy collisions will produce a range of particles including neutrons
- Neutrons in particular can be hard on silicon based electronics

$${}^{30}\mathrm{Si} + n \to {}^{31}\mathrm{Si} + \gamma \to {}^{31}\mathrm{P} + \beta^{-} + \gamma \tag{1}$$

- Introduction of phosphorus increases n-doping which changes the response of detectors
- Neutron rate measured with thermal neutron detectors and compared to simulation

- In order to test the accuracy of the simulations a group of small detectors were designed for deployment during beam commissioning and make corrections as needed
- Collectively the group is know as BEAST II
 - Beam Exorcism for A Stable experimenT
- BEAST II was deployed in phase 1 with a variety of detectors and is being deployed in phase 2 with a new set of detectors

BEAST II in Phase 1

3 He Tubes

$^{3}\mathrm{He} + n \rightarrow^{3}\mathrm{H} + ^{1}\mathrm{H} + 764 keV$

Neutron Capture Cross-Section

Signal Extraction

- A preamp is attached directly to each tube.
- \blacksquare Signal is then sent ${\sim}30m$ from the tubes to a receiver module
- The analog signal is then digitized with CAEN V1724 and sent to the control room

Beam Gas and Touschek Scattering

During the running of SuperKEKB various backgrounds are produced

- The main contributions to neutrons are:
 - Interactions with residual gases in the beam pipe
 - Interaction within beam bunches causes Touschek scattering
 - e^+e^- interactions release radiative Bhabhas (not present in phase 1)
- When scattered electrons or photons hit the beam pipe wall, showering events occur
- Phase 1 studies compared neutron rates from beam gas and Touschek contributions to simulated rates

Pressure Bumps during Phase 1

- Gasses adsorbed on getter pumps were released in a controlled manner into the beam line on several occasions for dedicated measurements
- These bumps were ideal for studying the beam gas contribution to neutron rate

Beam Size Scan

In order to study the Touschek contribution to backgrounds various beam diameters were sent through BEAST II

GEANT and Calibration

- After phase 1 the tubes were returned to UVic for final calibration
- UVic has a 168 GBq AmBe source encased in a cube of graphite 1.89m/side

$${}^{241}\text{Am} \rightarrow {}^{237}\text{Np} + {}^{4}\text{He} + \gamma$$

$${}^{9}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + n + \gamma$$

$$(3)$$

 Thermal rates were measured with the full system used at KEK and compared to a GEANT simulation

GEANT

Calibration Results

15 / 21

Phase 1 Measured Rates divided by Simulation

Figure: ratio of rates detected vs simulated rates

Effect of Correction in Neutron Sensitive Detector

SuperKEKB Phase 2

Belle-II was rolled onto the beam line in April

Phase 2 e^+e^- collisions without vertex detectors will begin next year

The return of BEAST

- ∎ ³He
- TPC
- CLAWS
- FANGS
- PLUME
- PIN
- Diamonds
- PXD
- SVD

Phase 2 plans

- Upgrade cabling to LSZH requirements
- Make use of radiative Bhahbas to determine if simulation error is present in SAD or GEANT4
- Confirm neutron rates are acceptable for installation of vertex detector

Conclusions

- ³He neutron detectors were able to successfully measure beam backgrounds in Phase 1 commissioning and correct simulation
- Preparations for Phase 2 are on track
 - Components start shipping end of JuneInstallation begins end of October
- ³He will continue to provide unique insight into the SuperKEKB beam conditions

Backup Slides

Figure 2.3: Cross section of the Belle II detector. The forward direction is on the right, and is the direction the electron beam travels. The whole detector is 5 m tall, and approximately symmetric in ϕ [3].

Machine Parameters

2013/July/29	LER	HER	unit	
E	4.000	7.007	GeV	
ļ	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28	%	includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.18x10 ⁻⁴	4.53x10 ⁻⁴		
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0244	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
τ _{x,y} /τ _s	43.2/21.6	58.0/29.0	msec	
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8×10 ³⁵		cm ⁻² s ⁻¹	

SuperKEKB luminosity projection

Enter the BEAST

Primary detectors in BEAST II* for phase I:

System	Institution	#	Unique measurement	
PIN diodes	Wayne St.	64	Neutral vs. charged dose rate	
Time Projection Chambers	U. Hawaii	4	Fast neutron flux and tracking	
Diamonds	INFN Trieste	4	Beam abort	
He3 tubes	U. Victoria	4	Thermal neutron rate	
CsI(Tl) crystals	U. Victoria	6	EM energy spectrum, injection backgrounds	
CsI+LYSO crystals	INFN Frascati	6+6		
BGO crystals	National Taiwan U.	8	Luminosity and EM rate	
CLAWS plastic scintillators	MPI Munich	8	Fast injection backgrounds	

BEAST II: the commissioning detector

Primary detectors in BEAST II for phase **II**:

System	Institution	#	Unique measurement
PIN diodes	KEK	64	Neutral vs. charged dose rate
"Micro" Time Projection Chambers	U. Hawaii	4 8	Fast neutron flux and tracking
Diamonds	INFN Trieste	48	Ionizing radiation rate
He3 tubes	U. Victoria	4	Thermal neutron rate
CLAWS plastic scintillators	MPI Munich	82 ladders	Fast injection backgrounds

...continued

25

BEAST II: the commissioning detector

Primary detectors in BEAST II for phase **II**:

System	Institution	#	Unique measurement
Belle II PXD	U. Bonn	2 ladders	Radiation tolerance for final physics runs
Belle II SVD	КЕК	4 ladders	Radiation tolerance for final physics runs
FANGS	U. Bonn	15	Silicon pixel sensors (synchrotron x-ray spectrum)
PLUME	Strasbourg	2 ladders	Silicon pixel sensors (collimator adjustment)

