Cap congress 2017

Sensor development for spherical gas detector for dark matter search

Alexis Brossard
On behalf of News-G collaboration

Principle of detection

- The sphere is grounded and HV is applied on a spherical sensor.

$$E(r) \approx \frac{V}{r^2} r_{anode}$$

- -Particle ionizes gas.
- -Primary electrons drift toward the sensor.
- -Close to the sensor, secondary electron/ion pairs are produced.
- -Signal is induced by motion of secondary ion.
- -This signal is processed by a pre-amplifier and digitized.

- -Possibility to use large range of target mass.
- -Sub-keV energy threshold.
- -Identification of point like energy deposition

Pulse shape discrimination

Key point: the sensor

Single electrode sensor:

Sensor Development

Few sensors have been tested:

What we expect:

Stable with time

Homogenous response

Avoid charges accumulation and gain/rate dependencies

Development done at:

- -Thessaloniki University; Ilias Savvidis
- -LSM; Ali Dastgheibi-Fard
- -CEA Saclay; Ioanis Giomataris, Ioanis Katsioulas

Problems faced

Fe 55 source

The Bakelite Sensor

The bakelite resistive umbrella

Advantages:

- Bakelite resistivity up to ~ 10^12
- Compact and homogenous material

Bakelite Chemical Formula: (C6-H6-O.C-H2-O)x

Thermosetting phenol formaldehyde resin, formed from a condensation reaction of phenol with formaldehyde.

Queen's S30

Port for radioactive source or laser.

Port for radioactive gas

Stability

Calibration using ²¹⁰Po alpha at 5.3 MeV.

30 cm diameter sphere Gas mixture: Ar + 2% CH₄ @ 500 mbar

Loss of gain about 2% per day.

Not necessarily due to the sensor but more due to loss of gas quality.

Influence of HV on second electrode with HV sensor at 1950 V

30 cm diameter sphere
Gas mixture:
Ar + 2% CH₄ @ 500 mbar
Source:

37Ar
Electronic capture
released 0.27 or 2.8 keV

Amplitude, HV second electrode = +50 V

Applying a positive voltage decreases the gain of the detector.

Amplitude, HV second electrode = -50 V

Applying a negative high voltage improves the resolution and the gain of the detector.

Calibration at low energy

Calibration at low energy

 $\sigma_1/\mu_1 = 57 \%$ $R_1 = 3 Hz$

L capture: 0.2702 keV BR = 0.0890

 $R_{2} = 28 \text{ Hz}$

K capture 2.8224 keV BR = 0.9017

Other development: Achinos sensor

- -Amplification is driven by the ball size. Smaller ball gives higher amplification.
- -Electric field far from the sensor is proportional to sensor radius. In large diameter sphere, a too small sensor gives a to weak electric field at large distance, then electron attachment induce a loss of signal.

Achinos sensor

$$E(r) \approx \frac{V}{r^2} r_{anode}$$

- -Amplification is driven by size of each small ball.
- -Volume electric field is driven by Achinos structure

News-G collaboration

NEWS-SNO 140 cm diameter sphere. Will be installed at SNOLAB next year.

Monday:

Quentin Arnaud: Final results on the search for low-mass WIMPs with the NEWS-G experiment.

Daniel Durnford: Calibration schemes for Spherical Gas Detectors.

Thursday

Gilles Gerbier: Status of NEWS-G experiment

Philippe Di Stefano: Quenching measurements for a spherical detector at the COMIMAC facility

collaboration

- Queen's University Kingston G Gerbier, P di Stefano, R Martin, T Noble, D Dunrford A Brossard, A Kamaha, P Vasquez dS, Q Arnaud, K Dering, J Mc Donald, M Clark, M Chapellier
 - Copper vessel and gas set-up specifications, calibration, project management
 - Gas characterization, laser calibration, on smaller scale prototype
 - Simulations/Data analysis
- IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay -I Giomataris, M Gros, C Nones, I Katsioulas, T Papaevangelou, JP Bard, JP Mols, XF Navick.
 - Sensor/rod (low activity, optimization with 2 electrodes)
 - Electronics (low noise preamps, digitization, stream mode)
 - DAQ/soft
- LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry F Piquemal, M Zampaolo, A DastgheibiFard
 - Low activity archeological lead
 - Coordination for lead/PE shielding and copper sphere
- Thessaloniki University I Savvidis, A Leisos, S Tzamarias, C Elefteriadis, L Anastasios
 - Simulations, reutron calibration
 - Studies on sensor.
- LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble D Santos, JF Muraz, O Guillaudin
 - Quenching factor measurements at low energy with ion beams
- Technical University Munich A Ulrich, T Dandl
 - Gas properties, ionization and scintillation process in gaz.
- Pacific National Northwest Lab E Hoppe, D Asner
 - Low activity measurements, Copper electroforming
- RMCC (Royal Military College Canada) Kingston D Kelly, E Corcoran
 - 37 Ar source production, sample analysis
- SNOLAB -Sudbury P Gorel
 - Calibration system/slow control
- University of Birmingham

 Kostas Nicolopoulos
 - Simulations, analysis, R&D
- Associated lab : TRIUMF F Retiere
 - Future R&D on light detection, sensor

BACKUP

Sedine, Neon run, 40 days, Ne + 0.7 % CH4 at 3,1 bars

Comsol simulation of the electric field. HV1 = 1950 V

