Investigation of Large Area Avalanche Photodiodes for the Experimental Measurement of the Electron Capture Decay of ⁴°K: KDK Project

> Presented by: Matthew Stukel, Queen's University, MSc For the CAP Congress 2017

⁴⁰K Decay Scheme

- ⁴⁰K (0.0117%) can be found in natural potassium
- Contaminant in many rare event searches
- Has been shown to have an implication on the long standing claim of the DAMA/LIBRA experiment
- Important Decay Channels:
 - 10.55 % to ⁴⁰Ar*, EC*
 - 0.2 % to ⁴⁰Ar, EC
- Branching ratio of electron capture to ground state has never been experimentally measured
- Only known example of a unique-third forbidden transition.

FIG 1: ⁴⁰K Decay Chain ^[4]

[4] Be, M.M., Chiste, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., MACMAHON, D. and LEE, K., 2004. Table of Radionuclides (Comments on evaluation). *Monographie BIPM-5*, *7*.

KDK Experiment

KDK Experiment Idea

- Perform a dedicated measurement of the BR of ⁴⁰K EC decay into ground state
- A small, inner detector will trigger on the X-rays and Auger electrons from ⁴⁰K

- Outer detector used to tag the 1460 keV gammas: MTAS (Modular Total Absorption Spectrometer)
- Separates the events caused by the EC* decay from the direct EC.
- Interior Detector has multiple options: <u>APD</u> (<u>Avalanche Photodiode</u>) or Potassium rich scintillator (<u>KSI</u> supplied by the University of Tennessee)

FIG 2: KDK Experimental Setup

APD Operating Principal

- APD are silicon based detectors
- Incident particles create electronhole pairs and these move towards the PN junctions
- The p-n⁺ junction at the back of the APD has a high local field
- Electrons impact with the crystal lattice in this region forming new electron hole pairs
- Which in turn will be accelerated leading to further collisions
- Forming an Avalanche process

FIG 3: Basic Operating Principal of an APD^[3]

[3]http://www.hamamatsu.com/resources/pdf/ssd/e03_handboo k_si_apd_mppc.pdf

APD: Internal X-ray Detector

• Interior Detector Requirements

- Ability to detect low energy x-rays between 1-10 keV
- Small detector size (< 6cm) and ability to run in coincidence with MTAS
- ⁴⁰K source must be visible to the detector
- We use a Large Area Avalanche Photodiode; 13mm x 13mm Active Area from RMD
- A liquid cooling system was set up in order to cool the APD to a target goal of -30°C and increase its performance
- Electronics designed and provided by Paul Davis, U. Alberta MRS

FIG 4: APD Setup for insertion into MTAS

APD Testing Setup

FIG 5: Queen's University APD Testing Setup

APD ⁵⁵Fe Characterization

FIG 6: ⁵⁵Fe Spectrum from APD x-ray detector at Queen's University

- We use an ⁵⁵Fe (5.9 keV) source to perform our experiments at Queen's
- Typical resolution is ~8% (sigma/mean)
 - Low energy x-ray threshold measurements
 - Temperature Dependency
 - Voltage Dependency
 - MTAS feasibility

Low Energy X-Ray Threshold

FIG 7: APD Fluorescence Calibration.

- APD must be able to detect low energy x-rays (~1.5 -10 keV)
- This is tested by Fluorescence. ⁵⁵Fe is used as the x-ray source
- Able to achieve our low threshold of 1.49 keV (Al). Difficult to go lower as we hit our noise threshold
- Calibration Targets Include:
 - Aluminum: 1.49 keV
 - KCl Window: 2.96 keV
 - Titanium: 4.51 keV
 - Chromium: 5.41 keV (from steel)

APD Gain Characterization

FIG 8: APD Characterization through Temperature and Voltage

- The gain factor of the APD can be controlled by the Voltage and Temperature
- Events blend into the noise below 1600 V and around 0°C
 - Voltage: By increasing the voltage you increase the electric field across the APD. This will induce a larger avalanche (per event) and produce a larger signal
 - Temperature: Higher temperatures increase the vibrations in the crystal lattice. Electron-hole pairs collide more keeping them from building energy and creating a new electron hole pair. Hindering the avalanche process and decreasing the signal

Complete KDK Setup

FIG 9: Complete KDK experimental setup (up). MTAS (upper right). Liquid Chiller, power supply and DAQ (Lower Right)

Can the APD detect ⁴⁰K x-rays?

- Initial ⁴⁰K run was performed in March, 2017
- ⁴⁰K coincident peak was clearly visible
- Allows for branching ratio measurements to be performed by identifying coincident and anti-coincident regions
- Source contains a ¹²⁵Sb contamination
- Data is blinded in the anticoincident region
- Analysis is being performed:
 - Understanding our background
 - Efficiency Measurements of system (MTAS + APD)
 - Effect of Auger electrons and β -from the decay

Summary/ Future Improvements

- The KDK collaboration is a group dedicated to the measurement of the branching ratio of the EC channel decay of ⁴⁰K.
- Current APD x-ray detector:
 - Detects low energy x-rays (Aluminum Fluorescence (1.49 keV))
 - Runs in coincidence with the MTAS gamma ray detector
 - Successfully see the ⁴⁰K coincident peak.
 - Has been characterized in terms of voltage and temperature
- APD is a successful candidate as the interior detector for the KDK experiment
- Current work is going to develop a better understanding of the APD detector (electron characterization), position measurements and into a new uncontaminated ⁴⁰K source

• KDK (Potassium-40 Decay) Team:

• Nathan Brewer^[1], Philippe Di Stefano^[2], Paul Davis^[6], Robert Grzywacz^[3], Daniel Hamm^[3], Peter Lechner^[7], Yuan Liu^[1], Eric Daniel Lukosi^[3], Chuck Melcher^[3], Jelena Nikovic^[7], Fredericca Petricca^[8], Charlie Rasco^[1], Fabrice Retiere^[9], Krzysztof Piotr Rykaczewski^[1], Luis Stand^[3], Pierre Squillari^[2], Matthew Stukel^[2], Dan Stracener^[1], Marzena Wolińska-Cichocka ^{[1][3][5]}, Itay Yavin^[4]

References

1) Pradler, J., Singh, B. and Yavin, I., 2013. On an unverified nuclear decay and its role in the DAMA experiment. *Physics Letters B*, 720(4), pp.399-404.

2) Wolińska-Cichocka, M., Rykaczewski, K.P., Fijałkowska, A., Karny, M., Grzywacz, R.K., Gross, C.J., Johnson, J.W., Rasco, B.C. and Zganjar, E.F., 2014. Modular Total Absorption Spectrometer at the HRIBF (ORNL, Oak Ridge). *Nuclear Data Sheets*, *120*, pp.22-25

3)http://www.hamamatsu.com/resources/pdf/ssd/e03_handbook_si_apd_mppc.pdf

4) Be, M.M., Chiste, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., MACMAHON, D. and LEE, K., 2004. Table of Radionuclides (Comments on evaluation). *Monographie BIPM-5*, 7.

5) Bernabei, R., Belli, P., d'Angelo, S., Di Marco, A., Montecchia, F., Cappella, F., d'Angelo, A., Incicchitti, A., Caracciolo, V., Castellano, S. and Cerulli, R., 2013. Dark matter investigation by DAMA at Gran Sasso. *International Journal of Modern Physics A*, 28(16), p.1330022.

Extra Slides

MTAS: External Detector

- The proposed outer detector will be the Modular Total Absorption Spectrometer (MTAS) at Oak Ridge National Lab (ORNL)
- The MTAS detector consists of 19 Nal(Tl) hexagonal shaped detectors (53cm x 20cm) [2] weighing in at ~54 kg each
- A high efficiency is needed to avoid false positives from the EC* channel and other background sources
- The centre of MTAS has a 63.5 mm through hole where the internal detector can be placed

FIG 11: MTAS at ORNL^[2]

FIG 12: MTAS Schematic view^[2]

[2] Wolińska-Cichocka, M., Rykaczewski, K.P., Fijałkowska, A., Karny, M., Grzywacz, R.K., Gross, C.J., Johnson, J.W., Rasco, B.C. and Zganjar, E.F., 2014. Modular Total Absorption Spectrometer at the HRIBF (ORNL, Oak Ridge). Nuclear Data Sheets, 120, pp.22-25

APD X-ray Detector Design

FIG 13: APD Assembly Setup

KDK Experiment Flow Chart

FIG 16: KDK Experimental Flow Chart

- By performing coincident measurements (250 ns window) we can separate the EC and EC* events from the radioactive source
- We can then determine the ratio between those events.
- Main concern becomes background events, False Positives and False Negatives

Calibration Sources

- Sources for testing are required in order for calibration of APD, MTAS veto efficiency and feasibility of experiment
- ⁶⁵Zn and ⁵⁴Mn provide excellent calibration sources.

FIG 17: Decay Scheme for the calibration source ⁶⁵Zn^[4] (Left) and ⁵⁴Mn^[4] (Right).

[4] Bé, M.M., Chisté, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., Kondev, F., MacMahon, D. and Lee, K.B., 2006. Table of Radionuclides (vol. 3– A= 3 to 244). Monographie BIPM, 5.

K-40 Source

- 0.1 mm Thin Carbon Foil (~1cm x1cm x 1µm) implanted with enriched with ⁴⁰K.
- KCL from American Instruments can be enriched with ⁴⁰K by 3%
- ORNL implanted the ⁴⁰K atoms onto a thin sheet of Carbon Foil

125Sb

- ¹²⁵Sb adds a tricky background for a physics result from the run
- Beta-decay to excited states will contaminate the coincident sector (Seen on previous slide)
- Long lived isomers will contaminate the anticoincident sector

FIG 18: ¹²⁵Sb Decay Scheme^[4] [4] Bé, M.M., Chisté, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., Kondev, F., MacMahon, D. and Lee, K.B., 2006. Table of Radionuclides (vol. 3–A= 3 to 244). *Monographie BIPM*, 5.

DAMA Experiment and Results

- 25 x 10 kg of NaI crystals registering energy depositions from 2 keV to tens of MeV, from almost any source: electrons, γ and X-rays, μ , α and nuclear recoils
- Uses the annual modulation of DM signals to interpret nuclear recoils as coming from WIMPs interacting with the crystals
- Event rates observed by DAMA: $R(E,t) = B_0(E) + S_0(E) + S_m(E)cos(\omega(t-t_0))$
- R(E,t): Total Measured Event Rate
- B₀(E) : Background Rate
- S₀(E) : Time-independent Dark Matter Rate
- S_m(E): Time-dependent Dark Matter Rate Amplitude

FIG 19: Single-hit event modulation rates measured by DAMA.^[5]

23

[5] Bernabei, R., Belli, P., d'Angelo, S., Di Marco, A., Montecchia, F., Cappella, F., d'Angelo, A., Incicchitti, A., Caracciolo, V., Castellano, S. and Cerulli, R., 2013. Dark matter investigation by DAMA at Gran Sasso. *International Journal of Modern Physics A*, *28*(16), p.1330022.

Slide prepared by Pierre Squillari

Role of KDK in DAMA

• Dark Matter models predict different modulation fractions

$$\varsigma = \frac{S_m}{S_0} = \frac{S_m}{R_0 - B_0}$$

• Where the background is a function of the concentration of K⁴⁰ ([⁴⁰K]) and the branching ratio.

$$B_0 = B_{other} + \alpha (1 - \varepsilon) [{}^{40}K]BR_{EC*} + \alpha [{}^{40}K]BR_{EC} + \beta [{}^{40}K]$$

• The BR_{EC} is not precisely known which can lead to excluded modulation fraction regions

$$\begin{bmatrix} {}^{40}\mathbf{K} \end{bmatrix} = \frac{R_0 - B_{\text{other}} - {}^{S_m}/\varsigma}{\alpha(1 + \rho - \varepsilon) + \beta} \text{ where } \rho = \frac{BR_{EC}}{BR_{EC*}}$$

Role of KDK in DAMA

$$[^{40}\mathrm{K}] = \frac{R_0 - B_{\mathrm{other}} - \frac{S_m}{\varsigma}}{\alpha(1 + \rho - \varepsilon) + \beta}$$

 A high branching ratio is unfavorable for DAMA and excludes the 7% and 10% modulation fractions

FIG 20: Required modulation fraction as a function of ^{nat}K contamination and BR_{EC} .

[1] Pradler, J., Singh, B. and Yavin, I., 2013. On an unverified nuclear decay and its role in the DAMA experiment. *Physics Letters B*, 720(4), pp.399-404.

Slide prepared by Pierre 25

Electron Distance in APD

FIG 19: Multiple Energy Electron Stopping Distance in APD

Fluorescence Sources

Aluminum

Fluorescence Spectrum

FIG 21: Flourescence Spectrum using a ⁵⁵Fe on a Steel and Aluminum target

- Not all spectrum are shown on left graph (to minimize clutter)
- Ability to see Aluminum Peak is great as it is much below 3 keV goal