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40K Decay Scheme

FIG 1: 40K Decay Chain [4]

• 40K (0.0117%) can be found in natural 
potassium

• Contaminant in many rare event searches
• Has been shown to have an implication on the 

long standing claim of the DAMA/LIBRA 
experiment

• Important Decay Channels:
• 10.55 % to 40Ar*,  EC*
• 0.2 % to 40Ar, EC 

• Branching ratio of electron capture to ground 
state has never been experimentally measured

• Only known example of a unique-third 
forbidden transition. [4] Be, M.M., Chiste, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., 

MACMAHON, D. and LEE, K., 2004. Table of Radionuclides (Comments on evaluation). Monographie
BIPM-5, 7.



KDK Experiment



KDK Experiment Idea
• Perform a dedicated measurement of the BR of 40K EC decay into ground state 

• A small, inner detector will trigger on the X-rays and Auger electrons from 40K

• Outer detector used to tag the 1460 keV
gammas: MTAS (Modular Total Absorption 
Spectrometer)

• Separates the events caused by the EC* 
decay from the direct EC. 

• Interior Detector has multiple options: APD 
(Avalanche Photodiode) or Potassium rich 
scintillator (KSI supplied by the University of 
Tennessee)

FIG 2: KDK Experimental Setup



APD Operating Principal
• APD are silicon based detectors
• Incident particles create electron-

hole pairs and these move towards 
the PN junctions

• The p-n+ junction at the back of the 
APD  has a high local field

• Electrons impact with the crystal 
lattice in this region forming new 
electron hole pairs

• Which in turn will be accelerated 
leading to further collisions

• Forming an Avalanche process

FIG 3: Basic Operating Principal of an APD[3]

[3]http://www.hamamatsu.com/resources/pdf/ssd/e03_handboo
k_si_apd_mppc.pdf



APD: Internal X-ray Detector
• Interior Detector Requirements

• Ability to detect low energy x-rays between 1-
10 keV 

• Small detector size (< 6cm) and ability to run in 
coincidence with MTAS

• 40K source must be visible to the detector

• We use a Large Area Avalanche Photodiode; 
13mm x 13mm Active Area from RMD

• A liquid cooling system was set up in order 
to cool the APD to a target goal of -30oC and 
increase its performance

• Electronics designed and provided by Paul 
Davis, U. Alberta MRS

FIG 4: APD Setup for insertion into MTAS



APD Testing Setup

FIG 5: Queen’s University APD Testing Setup



APD 55Fe Characterization

FIG  6: 55Fe Spectrum from APD x-ray detector at Queen’s University

• We use an 55Fe (5.9 
keV) source to perform 
our experiments at 
Queen’s

• Typical resolution is 
~8% (sigma/mean)
• Low energy x-ray 

threshold 
measurements

• Temperature 
Dependency

• Voltage Dependency
• MTAS feasibility



Low Energy X-Ray Threshold

FIG 7: APD Fluorescence Calibration.

• APD must be able to detect low 
energy x-rays (~1.5 -10 keV)

• This is tested by Fluorescence. 55Fe 
is used as the x-ray source

• Able to achieve our low threshold 
of 1.49 keV (Al). Difficult to go 
lower as we hit our noise threshold

• Calibration Targets Include: 
• Aluminum: 1.49 keV
• KCl Window: 2.96 keV
• Titanium: 4.51 keV
• Chromium: 5.41 keV (from steel)



APD Gain Characterization

FIG 8: APD Characterization through Temperature and Voltage

• The gain factor of the APD can be 
controlled by the Voltage and 
Temperature

• Events blend into the noise below 
1600 V and around 0oC
• Voltage: By increasing the voltage you 

increase the electric field across the APD. 
This will induce a larger avalanche (per 
event) and produce a larger signal

• Temperature: Higher temperatures 
increase the vibrations in the crystal 
lattice. Electron-hole pairs collide more  
keeping them from building energy and 
creating a new electron hole pair. 
Hindering the avalanche process and 
decreasing the signal



Complete KDK Setup

FIG 9: Complete KDK experimental setup (up). MTAS (upper right). 
Liquid Chiller, power supply and DAQ (Lower Right)



Can the APD detect 40K x-rays?

FIG 10: Blinded 40K run. 

• Initial 40K run was performed in 
March, 2017

• 40K coincident peak was clearly 
visible 

• Allows for branching ratio 
measurements to be performed 
by identifying coincident and 
anti-coincident regions

• Source contains a 125Sb 
contamination

• Data is blinded in the anti-
coincident region

• Analysis is being performed:
• Understanding our background
• Efficiency Measurements of 

system (MTAS + APD)
• Effect of Auger electrons and β-

from the decay



Summary/ Future Improvements
• The KDK collaboration is a group dedicated to the measurement of the 

branching ratio of the EC channel decay of 40K.
• Current APD x-ray detector:

• Detects low energy x-rays (Aluminum Fluorescence (1.49 keV))
• Runs in coincidence with the MTAS gamma ray detector
• Successfully see the 40K coincident peak. 
• Has been characterized in terms of voltage and temperature

• APD is a successful candidate as the interior detector for the KDK 
experiment

• Current work is going to develop a better understanding of the APD 
detector (electron characterization), position measurements and into a 
new uncontaminated 40K source



•KDK (Potassium-40 Decay) Team: 
• Nathan Brewer[1],Philippe Di Stefano[2], Paul Davis[6],Robert Grzywacz[3], Daniel 
Hamm[3], Peter Lechner[7],Yuan Liu[1], Eric Daniel Lukosi[3], Chuck Melcher[3] ,Jelena 
Nikovic[7], Fredericca Petricca[8],Charlie Rasco[1],Fabrice Retiere[9] ,Krzysztof Piotr 
Rykaczewski[1],Luis Stand[3],Pierre Squillari[2]  ,Matthew Stukel[2],Dan Stracener[1]

,Marzena Wolińska-Cichocka [1][3][5], Itay Yavin[4]
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MTAS: External Detector
• The proposed outer detector will be the Modular Total Absorption Spectrometer (MTAS) at Oak Ridge National 

Lab (ORNL)

• The MTAS detector consists of 19 NaI(Tl) hexagonal shaped detectors (53cm x 20cm) [2] weighing in at ~54 kg 
each

• A high efficiency is needed to avoid false positives from the EC* channel and other background sources

• The centre of MTAS has a 63.5 mm through hole where the internal detector can be placed

FIG 11: MTAS at ORNL[2] FIG 12: MTAS Schematic view[2]

[2] Wolińska-Cichocka, M., Rykaczewski, K.P., Fijałkowska, A., Karny, M., Grzywacz, R.K., Gross, C.J., Johnson, J.W., Rasco, B.C. and Zganjar, E.F., 2014. Modular Total Absorption Spectrometer at 
the HRIBF (ORNL, Oak Ridge). Nuclear Data Sheets, 120, pp.22-25



APD X-ray Detector Design 

FIG 13: APD Assembly Setup

FIG 14: APD Cooling Setup

FIG 15: MTAS Insert Setup



KDK Experiment Flow Chart

FIG 16: KDK Experimental Flow Chart

• By performing coincident measurements (250 ns window) we can separate the EC and EC* events 
from the radioactive source

• We can then determine the ratio between those events. 
• Main concern becomes background events, False Positives and False Negatives



Calibration Sources
• Sources for testing are required in order for calibration of APD, MTAS veto 

efficiency and feasibility of experiment

• 65Zn and 54Mn provide excellent calibration sources.

FIG 17: Decay Scheme for the calibration source 65Zn[4] (Left) and 54Mn[4] (Right).  
[4] Bé, M.M., Chisté, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., Kondev, F., MacMahon, D. and Lee, K.B., 2006. Table of Radionuclides (vol. 3–
A= 3 to 244). Monographie BIPM, 5.
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• 0.1 mm Thin Carbon Foil (~1cm 
x1cm x 1μm) implanted with 
enriched with 40K. 

• KCL from American Instruments 
can be enriched with 40K by 3%

• ORNL implanted the 40K atoms 
onto a thin sheet of Carbon Foil



125Sb

FIG 18: 125Sb Decay Scheme[4]

[4] Bé, M.M., Chisté, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., Kuzmenco, N., Helmer, R., Kondev, 
F., MacMahon, D. and Lee, K.B., 2006. Table of Radionuclides (vol. 3–A= 3 to 244). Monographie BIPM, 5.



DAMA Experiment and Results

Slide prepared by Pierre Squillari

• 25 x 10 kg of NaI crystals registering energy depositions from 2 keV to tens of MeV, from

almost any source: electrons, γ and X-rays, μ, α and nuclear recoils

• Uses the annual modulation of DM signals to interpret nuclear recoils as coming from

WIMPs interacting with the crystals

• Event rates observed by DAMA:  R E, t = B0 E + S0 E + Sm E cos(ω(t −t0))

FIG 19: Single-hit event modulation rates measured by DAMA.[5]

• R(E,t): Total Measured Event Rate
• B0(E) : Background Rate
• S0(E) : Time-independent Dark 

Matter Rate
• Sm(E) : Time-dependent Dark Matter 

Rate  Amplitude

[5] Bernabei, R., Belli, P., d'Angelo, S., Di Marco, A., Montecchia, F., Cappella, F., d'Angelo, A., Incicchitti, 
A., Caracciolo, V., Castellano, S. and Cerulli, R., 2013. Dark matter investigation by DAMA at Gran 
Sasso. International Journal of Modern Physics A, 28(16), p.1330022.



Role of KDK in DAMA

Slide prepared by Pierre

• Dark Matter models predict different modulation fractions

• Where the background is a function of  the concentration of K40 ([40K]) and the branching

ratio. 

B0 = Bother + α (1 − ε)[40K]BREC∗ + α[40K]BREC + β[40K]

• The 𝐵𝑅𝐸𝐶 is not precisely known which can lead to excluded modulation fraction regions



Role of KDK in DAMA

Slide prepared by Pierre

FIG 20: Required modulation fraction as a function of 
natK contamination and BREC

.

• A high branching ratio is unfavorable 
for DAMA and excludes the 7% and 
10% modulation fractions  

[1] Pradler, J., Singh, B. and Yavin, I., 2013. On an unverified nuclear decay and its role in the DAMA 
experiment. Physics Letters B, 720(4), pp.399-404.



Electron Distance in APD

FIG 19: Multiple Energy Electron Stopping
Distance in APD



Fluorescence Sources



Fluorescence Spectrum

• Not all spectrum are shown on 
left graph (to minimize clutter)

• Ability to see Aluminum Peak is 
great as it is much below 3 keV 
goal

FIG 21: Flourescence Spectrum using a 55Fe on a Steel and 
Aluminum target


