

Searching for Dark Matter with the PICO Bubble Chambers

Guillaume Giroux

CAP Congress Queen's University June 1st, 2017

Other **PICO** Talks at the Congress

Arthur Plante (Université de Montréal)

Dark Matter Search Results of the PICO experiment in the Effective Field Theory Context 29 May 2017, 13:30

Scott Fallows (University of Alberta) WIMP Search at Low Energy Threshold with PICO-60 C₃F₈ 29 May 2017, 14:00

Alexandre Le Blanc (Laurentian University) Bubble growth studies in superheated liquids for the PICO experiment 29 May 2017, 16:45

Olivia Scallon (Laurentian University) Simulations of the Muon Veto for the PICO Experiment 30 May 2017, 13:45

Direct Searches for WIMPs

Goal:

Detecting nuclear recoils from *Weakly Interacting Massive Particles* (WIMPs) elastic scattering

Challenges:

Small nuclear recoil energy (1-100 keV) Small scattering cross-section

Requirements:

Low threshold Large exposure Low background

Dark Matter Direct Detection

WIMP-Matter Couplings

Unknown how WIMPs couple with matter:

• Spin-Independent

Enhancement with nucleus A²: Argon Germanium, Xenon

Spin-Dependent

Enhancement with nuclear spin: ¹⁹F, ¹²⁹Xe, ¹³¹Xe

Searches with multiple targets are essential to covering the available parameter space

Spin-dependent vs. Spin-Independent Interactions

Superheated Liquid Detectors

Superheated Liquid Detectors

PICO

If the pressure is lowered, the Gibbs potential is modified

Still two minima, but one is a metastable state: **superheated liquid**

Superheated Liquid Detectors

Density

If the pressure is lowered, the Gibbs potential is modified

Still two minima, but one is a metastable state: **superheated liquid**

Background Control

Gamma/beta radiation

- S.H. liquid detector have intrinsic electron-recoi rejection (dE/dx threshold)
- At 3.2 keV nuclear-recoil energy threshold:
 < 10⁻¹¹ efficiency for electron-recoils
- Alpha decays
 - Acoustic discrimination of nuclear recoils: multiple nucleation sites on longer alpha particle tracks
 - Alpha calorimetry (²²²Rn chain decay ID)

• Fast neutrons

- Unambiguous multiple scattering signature
- Shielding: underground laboratory, radio-pure construction material, additional water/PE shielding

Background Control

Background control

Gamma/beta radiation

- S.H. liquid detector have intrinsic electron-recoil rejection (dE/dx threshold)
- At 3.2 keV nuclear-recoil energy threshold:
 < 10⁻¹¹ efficiency for electron-recoils

• Alpha decays

- Acoustic discrimination of nuclear recoils: multiple nucleation sites on longer alpha particle tracks
- Alpha calorimetry (²²²Rn chain decay ID)

• Fast neutrons

- Unambiguous multiple scattering signature
- Shielding: underground laboratory, radio-pure construction material, additional water/PE shielding

The **SNOLAB** Underground Laboratory

- Cleanroom environment 2 km (6800 ft.) underground (6000 m water equivalent)
- Cosmic ray shielding: 1 muon per m² every 3 days (5 X 10⁷ reduction)
- PICO bubble chambers operating since 2010

Preco

Previous Results

PICO and COUPP merger: PICO

PICASSO-32

 C_4F_{10}

PICO-2L C₃F₈

 $\begin{array}{c} \textbf{COUPP-60} \rightarrow \textbf{PICO-60} \\ \textbf{CF}_{3}\textbf{I} \end{array}$

Barnabé-Heider *et al.*, Phys. Lett. B624 **(2005)** S. Archambault *et al.*, Phys. Lett. B682, **(2009)** <u>Final results:</u> Behnke E. *et al.*, Astropart. Phys. 90 **(2017)**

C. Amole *et al.*, Phys. Rev. Lett. 114, 231302 **(2015)** C. Amole *et al.*, Phys. Rev. D 93, 061101 **(2016)** C. Amole et al., Phys. Rev. D 93, 052014 (2016)

Previous Results

- Anomalous nuclear-recoil-like surplus of events in first run of PICO-2L (C₃F₈) and PICO-60 (CF₃I)
- Post-run assays indicate the presence of a particulate matter contamination (stainless steel, quartz)

Previous Results

PICO

- Anomalous nuclear-recoil-like surplus of events in first run of PICO-2L (C₃F₈) and PICO-60 (CF₃I)
- Post-run assays indicate the presence of a particulate matter contamination (stainless steel, quartz)
- Focus on particulate mitigation eradicated the anomalous background in the second run of PICO-2L

C. Amole et al., Phys. Rev. D 93, 061101 (2016)

Surface Tension Effects

Queen's test Chamber (10 ml bubble chamber)

Quartz particulates stay in the water buffer

The **PICO-60** Bubble Chamber

PCO

The **PICO-60** Bubble Chamber

Inner volume components cleaned to MIL-STD-1246C level 50

Particulate size distribution

PICO

The "dish-washer"

4-Camera Photographic System

250 fps acquisition: trigger based on image entropy difference between consecutive images

17-bubble neutron multiple-scattering event

Guillaume Giroux - CAP Congress - May 1st 2017 - Queen's University

PICO

Blind (Deaf) Analysis

- Blinded acoustics analysis: alpha decays indistinguishable from nuclear recoils
- 45.7 kg fiducial mass
- 30 days live-time
- 85.1% WIMP selection efficiency
- 106 events considered after all cuts
- 3 multiple-bubble events
- 1.3 ton-days efficiency-corrected exposure

- All single bubbles
- Good fiducial single bubbles

C. Amole et al., arXiv:1702.07666 [astro-ph.CO] 2017

Guillaume Giroux - CAP Congress - May 1st 2017 - Queen's University

PICO

Blind (Deaf) Analysis

- Blinded acoustics analysis: alpha decays indistinguishable from nuclear recoils
- 106 events considered after all cuts
- 3 multiple-bubble events
- 1.3 ton-days efficiency-corrected exposure
- Unmasking reveals

no nuclear-recoil candidates

C. Amole et al., arXiv:1702.07666 [astro-ph.CO] 2017

Spin-Dependent Coupling

C. Amole et al., arXiv:1702.07666 [astro-ph.CO] 2017

LHC Dark Matter Working Group recommendations on simplified models

For a mediator exchanged in the s-channel: 4 free parameters:

- Dark matter mass: *m*_{DM}
- Mediator mass: *m*_{med}
- Universal mediator coupling to quarks: g_a
- Mediator coupling to dark matter: g_{DM}

We present constraints on $m_{\rm DM}$ and $m_{\rm med}$ for $g_{\rm q} = 0.25$ and $g_{\rm DM} = 1$ for an axial-vector mediator exchanged in the **s-channel**

C. Amole et al., arXiv:1702.07666 [astro-ph.CO] 2017

Future Chambers: **PICO-40L**

- 40-liter chamber "*Right-Side-Up*"
- New pressure vessel and detector assembly to replace PICO-60 at SNOLAB
- Buffer liquid-free bubble chamber
 - Background control
 - Target fluid flexibility
- Construction beginning this summer

Future Chambers: PICO-40L

New pressure vessel has arrived at SNOLAB surface labs

Inner volume assembly tests at Fermilab

Future Chambers: PICO-500

- Funding requested in Canada for the construction of a
 500-liter bubble chamber
- Choice of bubble chamber configuration after PICO-40L demonstration
- Construction starting 2018

Future Prospects

WIMP-proton couplings can be probed longer with fluorine targets before hitting the neutrino floor

Queen's University. Kingston, ON, Canada

C. Amole, G. Cao, U. Chowdhury, G. Crowder, G. Giroux, A. J. Noble. S. Olson

Universitat Politècnica de València, València, Spain M. Ardid, M. Bou-Cabo, I. Felis

Laboratory, Richland, WA, USA I. J. Arnguist, D. M. Asner, J. Hall, E. W. Hoppe

Pacific Northwest National

Saha Institute of Nuclear Physics, Kolkata, India P. Bhattacharjee, M. Das, S. Seth

Indiana University South Bend, South Bend, IN, USA E. Behnke, H. Borsodi, I. Levine, T. Nania, A. Roeder, J. Wells

Northwestern University, Evanston, IL, USA D. Baxter, C. J. Chen, C. E. Dahl, M. Jin, J. Zhang

Northeastern Illinois University, Chicago, IL, USA O. Harris

University of Chicago, Chicago, IL, USA J. I. Collar, A. Ortega

SNOLAB, Lively, ON, Canada K. Clark, I. Lawson

Laurentian University. Sudbury, ON, Canada J. Farine, F. Girard, A. Leblanc, R. Podvivanuk. O. Scallon, U. Wichoski

Drexel University, Philadelphia, PA, USA P. Campion, R. Neilson

University of Alberta. Edmonton, AB, Canada S. Fallows, C. B. Krauss, P. Mitra

Université de Montréal.

Montréal, QC, Canada

M. Laurin, A. Plante,

Tech

Blacksburg, VA, USA D. Maurya, S. Priya, Y. Yan

Virginia

Universidad Nacional Autónoma de México. México D. F., México E. Vázguez-Jáuregui

Czech Technical University in Prague, Prague, Czech Republic R. Filgas, F. Mamedov, I. Štekl

Fermi National Accelerator Laboratory, Batavia, IL, USA P. S. Cooper, M. Crisler, W. H. Lippincott, A. E. Robinson, R. Rucinski, A. Sonnenschein

UNAM

Extra Slides

Nuclear-Recoil Nucleation Efficiency

- Seitz *"hot-spike model"* gives 100% n.r. nucleation efficiency above thermodynamic threshold
- Measured in C₃F₈ with PICO-2L detector AmBe neutron calibration and with 30 ml test detector quasi-mono-energetic neutron beam calibration at U. of Montreal Tandem Van de Graaff facility
- <u>Conservative approach:</u> for a given WIMP mass and coupling, we select the efficiency curves for F and C that give the worst efficiency within 1-sigma of the best fit

Guillaume Giroux - CAP Congress - May 1st 2017 - Queen's University

PICO

Spin-Independent Coupling

Guillaume Giroux - CAP Congress - May 1st 2017 - Queen's University

Constraints on the effective WIMP-proton (a_p) and WIMP-neutron (a_n) couplings are calculated according to the method proposed in D. R. Tovey *et al.*, Phys.Lett. B488 (2000) 17-26

Guillaume Giroux - CAP Congress - May 1st 2017 - Queen's University

PICO