Search for physics beyond the Standard Model with the ATLAS detector

Otilia Ducu

Université de Montréal (Canada), IFIN-HH (Romania)

May 30, 2017

Canadian Association of Physicists Congress, Kingston, ON

1/27

STATUS OF THE STANDARD MODEL (SM)

SM provides a mathematical description of all known particles and their interaction

- All SM cross sections of all SM heavy particles and their combination are measured
- Higgs boson discovered at the LHC in July 2012 (see <u>Alain's talk</u> for more details)

However, several experimental and theoretical problems exist with the SM:

Matter-antimatter

number of generations number of bosons

neutrinos

dark energy dark matter

grand unification ?

ヘロン 人間と 人間と 人間と

: ୬९୯ 2/27

THE GAUGE HIERARCHY PROBLEM

Gauge hierarchy problem in the Standard Model:

 $\bullet\,$ Higgs boson couples to all massive particles \to EW scale - Planck scale $\to\,$ large quantum correction

• Large fine-tuning ($\sim 10^{17}$) required to accommodate the Higgs boson mass (125 GeV)

SUPERSYMMETRY

Supersymmetry (SUSY) can solve the gauge hierarchy problem:

• SM boson \leftrightarrow new fermion; SM fermion \leftrightarrow new scalar

• The SM (positive) and SUSY (negative) corrections cancel exactly : SUSY broken!

A NATURAL SUSY SPECTRUM

= v) (() 5 / 27

OTHER BSM THEORIES

Other Beyond the Standard Model (BSM) theories:

- Vector like quarks: hypothetical 1/2 spin colored particles (left- and right-handed states have the same coupling)
- Large extra dimensions: $\Lambda_{NP} \rightarrow$ scale of new space-time structure/quantum gravity
- New strong Dynamics: $\Lambda_{NP} \rightarrow$ new strong coupling scale, composite Higgs
- $\rightarrow\,$ Experimental signature: new particles with a mass close to Λ_{NP}

Can expect several types of final states, including or not:

- Leptons & photons
- Hadrons (resolved or boosted)
- Di-boson resonances
- Missing transverse energy

ATLAS DATA

Search for BSM physics with the ATLAS detector using Run-2 (13 ${
m TeV}$) data:

• Corresponding to an integrated luminosity of ${\sim}36~{\rm fb}^{-1}$

- Results from ATLAS Supersymmetry Public Results and Exotics Public Results
- Focus on analyses obtained with full 2015 and 2016 data-sets (& with lot of contributions from Canadian researchers)

SUSY (SIMPLIFIED) MODELS

Search for SUSY with SRs optimized to maximize the sensitivity to a large # of signal models:

• Final states with 0 \rightarrow 4/5 leptons, many (*b*-) jets, low or high E_T^{miss} (& $\tilde{\chi}_1^0$, the LSP)

SEARCH FOR SUSY WITH MULTI-JETS FINAL STATES

Final states with 0-leptons and $2\rightarrow 6$ jets, CONF-2017-022 or $7\rightarrow 11$ jets, CONF-2017-033

- Key variables: N_{jets} , m_{eff} or H_T , E_T^{miss} , $\Delta \Phi(jet_{1,2,(3)}, E_T^{miss})_{min} > 0.2 \rightarrow 0.8$, etc.
- Main backgrounds: W/Z+jets, $t\bar{t}$, single top, di-boson and multi-jets processes
 - Estimation using dedicated CRs, but for di-boson processes (MC simulations)

• Most significant excesses: Meff-2j-2100 (a significance of 2.14 standard deviations)

10/27

EXCLUSION LIMITS (1-STEP & 2-STEP DECAYS)

No significant excess \rightarrow place limits on sparticles masses using simplified SUSY models:

 $\bullet\,$ Limits obtained also with other final states (blue) \rightarrow complementary of the ATLAS searches

11/27

FINAL STATES WITH MULTI-b JETS

Search for SUSY with 0 or 1 lepton and \geq 3 *b*-jets, <u>ATLAS-CONF-2017-021</u>

- Discovery strategy: cut-and-count SRs targeting compressed, intermediate and boosted reg.
- Exclusion strategy: multi-bin fit across binned orthogonal SRs in N_j and $m_{\rm eff}$
- Key variables: nr. of leptons and (b-)jets, E_T^{miss} , m_{eff} , m_T , M_J^{\sum} , $\Delta \Phi(\text{jet}_{1\rightarrow 4}, E_T^{miss})_{min}$, etc

- Dominant background: $t\bar{t}$ pairs with additional high p_T jets
- tt MC simulations normalized in an 1-lepton CR and extrapolated to VRs and SRs

イロト イポト イヨト

FINAL STATES WITH MULTI-b JETS

Results in the signal regions:

• No significant excess found above the predicted background in the SRs

• Gluino masses excluded up to 1.9 ${
m TeV} \rightarrow$ strongest limits among all ATLAS searches

DIRECT TOP SQUARK SEARCHES

Search for direct top squarks production in events with a Z or Higgs boson, $\underline{CONF-2017-019}$

- SRs with at least three leptons plus a *b*-jet (top squark decays via Z bosons)
 - Bkgs: *ttZ*, di-boson and "fake"/non-prompt leptons
 - Dominant source of uncertainty: limited statistics
- SRs with one or two leptons and at least four *b*-jets (top squark decays via Higgs bosons)
 - Bkgs: $t\bar{t}$ pair production (>80%)
 - Dominant source of uncertainty: $t\bar{t}$ bkg modeling

ヘロン 人間と 人間と 人間と

14/27

- No significant excess in any of the signal regions
- Top squarks masses excluded up to about 800 GeV

DIRECT TOP SQUARK SEARCHES

Summary of the dedicated ATLAS searches for top squark (stop) pair production

• Several top squark decay modes considered

• Top squark masses excluded up to 950 ${
m GeV}$

Multi-leptons searches

Several multi-l searches available: opposite/same-charge or three leptons, CONF-2017-030

- Same-charge (SS) final states: electron charge flips and fake leptons non-negligible bkgs
- Several signal regions defined with <u>SS or three leptons</u>, (*b*-)jets, $m_{\rm eff}$ and E_T^{miss}
- One signal region with three leptons of same electric charge (Rpc3LSS1b)

Direct searches for charginos and neutralinos in events with two or more leptons (link)

- Here focus on final states with ≥ 2 opposite-charge hadronic taus (CONF-2017-035)
- No *b*-jets or a tau lepton pair compatible with the Z boson mass
- Key variables: max transverse mass of the taus (min 70 GeV) and E_T^{miss} (min 110 GeV)
- Main bkgs: multi-jets, W+jets, di-bosons ("fake" or ۰ "real" tau candidates)

800 ann

m,.,m, [GeV]

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	b ⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference	
Inclusive Searches	MSUGRA/CMSSM 49. 4-44 ² (1 49. 4-44 ² (1 49. 4-44 ² (1 81. 8-44 ² (1) 81.	0-3 e, µ/1-2 τ 2 0 mano-jet 0 3 e, µ 0 1-2 τ + 0-1 ℓ 2 γ 7 7 2 e, µ (Z) 0	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 b 2 jets 2 jets 2 jets	 Yes 	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	2 600 GeV 2 600 GeV 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	143 1997 のしーロン 137 1997 のしー 137 1997 のー	1907.0555 ATLAS COM-5017 672 1604.0773 ATLAS COM-5017 022 ATLAS COM-5017 022 ATLAS COM-5017 022 1606.05130 1507.05403 ATLAS COM-2016.066 1100.07609	
3 rd gen. § med.	$\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{b}\overline{g}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{b}\overline{g}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow b\overline{b}\overline{g}_{1}^{0}$	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 2	1.92 TeV m(k ²)<500 GeV 1.97 TeV m(k ²)<200 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600	
3rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^D$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^D$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^D$ $\tilde{h}_1 \tilde{t}_1, \tilde{h}_1 \rightarrow b \tilde{t}_1^D$ $\tilde{h}_1 \tilde{t}_1, \tilde{h}_1 \rightarrow b \tilde{t}_1^D$ $\tilde{h}_1 \tilde{t}_1, \tilde{h}_1 \rightarrow b \tilde{t}_1^D$ $\tilde{h}_1 \tilde{t}_1 - b \tilde{t}_1^D$ $\tilde{h}_1 \tilde{t}_1 - b \tilde{t}_1^D$ $\tilde{h}_1 \tilde{t}_1 - b \tilde{t}_1$ $\tilde{h}_1 \tilde{t}_1 - b \tilde{t}_1$	0 $2 e, \mu$ (SS) $0 - 2 e, \mu$ $0 - 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 - 2 e, \mu$	2 b 1 b 1-2 b 1-2 jets/1-2 mono-jet 1 b 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	b, 990 GeV 4, 117-170 GeV 207-700 GeV 4, 90-190 GeV 205-950 GeV 4, 90-190 GeV 205-950 GeV 7, 90-190 GeV 205-950 GeV 7, 90-323 GeV 105-000 GeV 7, 90-320 GeV 230-950 GeV 7, 90-320 GeV 320-960 GeV	таўл-200 сем таў-200 сем таўл-100 сем таўл-200 сем таўл-100 сем таўл-200 сем таўл-200 сем таўл-200 сем	ATLAS-CONF-2017-038 ATLAS-CONF-2017-039 1209:2102, ATLAS-CONF-2016-077 5 UP to 950 GeV 1403.522 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019	
EW direct	$\begin{split} \hat{\ell}_{1,k}\hat{\ell}_{1,k}, \hat{\ell}_{-k}\hat{\ell}_{-k}^{2} \\ \hat{\ell}_{1,k}^{+}\hat{\ell}_{1,k}, \hat{\ell}_{-k}\hat{\ell}_{-k}^{2} \\ \hat{\kappa}_{1,k}^{+}\hat{\ell}_{1,k}^{+}\hat{\ell}_{2,k}^{+}\hat{\ell}_{-k}^{+}(rr), \hat{\kappa}_{2,k}^{+}(rr), \hat{\kappa}_{2,k}^{+}(rr), \hat{\kappa}_{2,k}^{+}(\ellr), \kappa$	2 e,µ 2 e,µ 2 τ 3 e,µ 2 ·3 e,µ 4 e,µ,γ 4 e,µ + γG 1 e,µ + γ + γG 2 γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	I 90-440 GeV 2 ⁺ / ₁ 760 GeV 2 ⁺ / ₁ 760 GeV 2 ⁺ / ₁ 580 GeV 2 ⁺ / ₁ 270 GeV 2 ⁺ / ₁ 580 GeV 3 ⁺ 15-370 GeV 9 580 GeV	المَرْدُمَ اللَّهُ اللَّ	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-	
Long-lived particles	Direct $\tilde{K}_{1}^{1}\tilde{K}_{1}^{-}$ prod., long-lived \tilde{K}_{1}^{0} Direct $\tilde{K}_{1}^{1}\tilde{K}_{1}^{-}$ prod., long-lived \tilde{K}_{1}^{0} Stable, stopped g R-hadron Stable g R-hadron Metastable g R-hadron GMSB, stable \tilde{K}_{1}^{0} -regres \tilde{K}	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 y displ. er/eµ/µ displ. vtx + jet	1 jet 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes · · Yes ·	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	1 430 GeV 2 450 GeV 2 850 GeV 2 537 GeV 2 537 GeV 2 537 GeV 2 1,0 TeV 4 440 GeV 4 1,0 TeV	тё?)-тё?)-160 мч, тё?)-02 пе тё?)-тё?)-160 мч, тё?)-157 п тё?)-160 мч, тё?)-157 п тё?)-100 кч тоне мистер-тоне 1.58 Теч итё?)-100 Сач, тэто пе Long Lived gluinos up ti Long Lived gluinos up ti	ATLAS-CONF-2017-017 1506.05302 1310.0584 1608.05129 1604.04530 0.1.6 TEV 0. UP to 500 GeV	
RPV	$ \begin{array}{l} LFV pp \rightarrow \bar{v}_\tau + X, \bar{v}_\tau \rightarrow c\mu/c\tau/\mu\tau \\ Blinear \ RPV \ OMSSM \\ \tilde{\mathcal{R}}^{2}_{\tau}, \tilde{\mathcal{R}}^{-1} \rightarrow QR^{2}_{\tau} \\ \tilde{\mathcal{R}}^{2}_{\tau}, \tilde{\mathcal{R}}^{-1} \rightarrow QR^{2}_{\tau} \tilde{\mathcal{R}}^{-1} \rightarrow QR^{2}_{\tau} \\ \tilde{\mathcal{R}}^{2}_{\tau}, \tilde{\mathcal{R}}^{-1} \rightarrow QR^{2}_{\tau} \tilde{\mathcal{R}}^{-1}_{\tau} \rightarrow QR^{2}_{\tau} \\ \tilde{\mathcal{R}}^{2}_{\tau}, \tilde{\mathcal{R}}^{-1} \rightarrow QR^{2}_{\tau} \end{array} $	$e\mu, er, \mu r$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ $0 4 + \tau$ $1 e, \mu 8$ $1 e, \mu 8$ 0 $2 e, \mu$	- 0-3 b - 5 large-R ji 5 large-R ji 10 jets/0-4 10 jets/0-4 2 jets + 2 b	· Yes Yes ets · ib · ib ·	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	L9.TeV X _{in} .e1.1.1.destration A Montpart X _{in} .e1.1.1.destration Montpart Montpa	1607.08079 1404.3500 ATLAS_CONF-2016-075 1405.5088 ATLAS_CONF-2016-057 ATLAS_CONF-2016-057 ATLAS_CONF-2017-013 ATLAS_CONF-2017-013 ATLAS_CONF-2017-013 ATLAS_CONF-2017-013 ATLAS_CONF-2017-036	
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes	20.3	2 510 GeV	m(\hat{r}_1^0)<200 GeV	1501.01325	
Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on 10 ⁻¹ 1 Mass scale [TeV]									

phenomena is shown. Many of the limits or based on simplified models, c.f. refs. for the assumptions made.

18/27

ATLAS Preliminary

√s = 7.8.13 TeV

LONG LIVED PARTICLES (LLP)

LLP final states: LLP arise from small couplings, heavy mediators, etc.

- Unique signature (lifetimes in the pico to nanoseconds range), usually negligible SM bkg
- Metastable: displaced vertices, DV O(1-10 mm) or disappearing tracks O(1-100 mm)
 - DV, CONF-2017-026: ≥ 1 DV with high mass and high nr. of tracks (≥ 5) and E_T^{miss}
 - Bkg: hadronic interaction (material veto) and accidental crossing (dominant)

• For $\tau = 1$ ns, upper limits on the gluino mass are placed above 2.2 TeV for $\tilde{\chi}_1^0$ 100 GeV

VECTOR-LIKE TOP QUARKS (T)

Search for vector-like top quarks (Q= $+\frac{2}{3}|e|$) with one lepton and E_T^{miss} (CONF-2017-015):

- Assuming only couplings to third gen. quarks, targeting $T \bar{T} \rightarrow Z/W/Ht + X, Z \rightarrow \nu \nu$
- Pre-selection: #b-jets (≥ 1), #jets (≥ 4), E_T^{miss} (> 300 GeV), $\Delta \Phi(j_{1,2}, E_T^{miss})$ (> 4)
- Dominant bkgs: semi-leptonic tt events, single top and W+jets production
- Reduced with requirements on e.g (W) transverse mass m_T, number of boosted selected top quarks

Heavy bosons (Z')

Search for Z' (spin 1) signatures with two opposite-charge lepton pairs (<u>CONF-2017-027</u>):

- Z': predicted by Grand Unified Theories, etc.
- In the Sequential SM (SSM), Z' has same couplings to fermions as the SM Z

If new physics, the invariant mass of the lepton pair is a great variable to look at:

- The new heavy resonance, Z', should create a bump
- Non-resonant effects should change the shape of the distribution

• Most significant excess at $m_{Z'} = 2.37$ TeV, in the di-electron channel (2.37 σ)

• But globally much less significant, only -0.2σ

イロン イヨン イヨン イヨン

Heavy bosons (W')

Search for heavy gauge boson resonance (spin 1) with one lepton and E_T^{miss} (CONF-2017-016):

- $\bullet~W':$ predicted by models with extra-dimensions, little Higgs model, etc.
- In the Sequential SM (SSM), W' has same couplings to fermions as the SM W, thus $W'\to\ell\nu$ or $W'\to qq$
- ullet Key variables: $m_{\mathcal{T}}
 ightarrow$ a signal would appear as an excess at high $m_{\mathcal{T}}$
- Main bkgs: W, tt and single top ("real", from MC) and multi-jets ("fakes", from data)

• Most significant excess is at $m_{W'} = 1.1 \text{ TeV}$ in the electron channel (2.3σ)

• In the muon channel, at $m_{W'} = 5 \text{ TeV} (1.8\sigma)$

Searches with di-jets events

Search for heavy resonances decaying to W or Z and a Higgs boson (VH) (CONF-2017-018)

- Only $q\bar{q}^{(')}b\bar{b}$ final states are considered
- And the high mass region ($m_{VH}>1~{
 m TeV}$) where the V and H bosons are highly boosted
- $\rightarrow\,$ Final states candidates (from each boson) are reconstructed in one single jet: small bkg
 - Key variable: mass of the two reconstructed (large-R) jets
 - After pre-selection, main bkg (90%) from multi-jets events (taken from data)

- The largest excess observed at $m_{JJ} = 3.0 \text{ TeV}$ with a local significance of 3.3σ
- The global significance of this excess is 2.2σ
- Heavy resonances (Z' or W' bosons) excluded up to ${\sim}2.5~{
 m TeV}$

SUMMARY OF DI-BOSON RESONANCE SEARCHES

*Expected and observed limits on the cross section times branching fraction to WZ for a new heavy vector boson W' at $\sqrt{s} = 13$ TeV. The different limit curves correspond to different decay modes for the W and Z bosons.

24/27

SEARCH FOR DARK MATTER (DM)

DM candidates: stable electrically-neutral particle, weakly interacting with the SM particles

- Direct detection: look directly for the mediator (di-jet resonance)
- Indirect detection: relay on signatures with high E_T^{miss} and a SM particle X (mono-X = q/g, b/t, γ , W/Z/h)
- → Today: results of the search for $pp \rightarrow Z' \rightarrow Ah \rightarrow \chi \tilde{\chi} b \bar{b}$ signals (A=pseudoscalar, <u>CONF-2017-028</u>)
- *E_T^{miss}* > 150 GeV, no isolated leptons and one reconstructed Higgs boson
- Dominant bkgs: $Z(\nu\nu)/W$ j and $t\bar{t}$

Source of uncort	Impact [%]			
source of uncert.	(a)	(b)	(c)	
V+jets modeling	5.0	5.7	8.2	
tī, single-t modeling	3.2	3.0	3.9	
SM Vh(bb) norm.	2.2	6.9	6.9	
Signal modeling	3.9	2.9	2.1	
MC statistics	4.9	11	22	
Luminosity	3.2	4.5	5.4	
b-tagging, track jets	1.4	11	17	
b-tagging, calo jets	5.0	3.4	4.7	
Jets with $R = 0.4$	1.7	3.8	2.1	
Jets with $R = 1.0$	< 0.1	1.2	4.7	
Total systematic	10	21	36	
Statistical	6	38	62	
Total	12	43	71	

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

Jets† E_T^{miss} ∫⊥ dt[fb⁻¹] Model l, γ Limit Reference ADD $G_{KK} + g/q$ 3.2 6 59 To 1604.07773 ADD non-resonant ((2 e, µ 20.3 4.7 TeV n = 3 HLZ1407.2410 ADD QBH $\rightarrow (a)$ 20.3 $\alpha = 6$ 1311 2006 8.7 TeV ATLAS-CONF-2016-069 ADD OBH 15.7 n = 6ADD BH high 5 pT $\geq 1 e. \mu$ 3.2 8.2 TeV n = 6, Mn = 3 TeV, rot BH ADD BH multilet 3.6 9.55 TeV n = 6 $M_0 = 3$ TeV rot BH 1512 02588 2 e, µ BS1 $G_{WV} \rightarrow \dot{U}$ 20.3 2 68 TeV $k(\overline{M}_{12} - 0.1)$ 1405 4123 RS1 $G_{WW} \rightarrow \gamma\gamma$ 2 y 3.2 TeV $k/\overline{M}_{PS} = 0.1$ 1606.03533 ww.mass Bulk RS $G_{KK} \rightarrow WW \rightarrow gg(s)$ 1 0.0 1 J Yes 13.2 See mass 1.24 eV $k(\overline{M}_m = 1.0$ ATLAS-CONF-2016-062 Bulk BS $G_{WW} \rightarrow HH \rightarrow bhbh$ 4ь 13.3 260-860 GeV $k/M_{Pl} = 1.0$ ATLAS.CONF.2016.049 Bulk BS $g_{WV} \rightarrow tt$ 1 e, µ > 1 b. > 1,1/2i Yes 20.3 2.2 TeV BR = 0.925 1505 07018 2UED/RPP ≥ 2 b. ≥ 4 i Yes 1.6 TeV Tier (1,1), BB($A^{(1,1)} \rightarrow tt$) = 1 ATLAS-CONF-2016-013 SSM 7' -+ // 2 e, µ 13.3 mass 4.05 TeV ATLASJCONE-2016-045 SSM $Z' \rightarrow \tau \tau$ 2 7 19.5 2.02 TeV 1502 07177 Leptophobic $Z' \rightarrow bb$ 1603.08791 SSM $W' \rightarrow tr$ 1.e.u Yes 13.3 W" mass 4.74 TeV ATLAS-CONF-2016-061 HVT $W' \rightarrow WZ \rightarrow qq_{PY} \mod A$ 0 e, µ 1 J Yes 13.2 W mean 2.4 TeV $g_V = 1$ ATLAS-CONF-2016-082 HVT $W' \rightarrow WZ \rightarrow qqqq$ model B 15.5 W" mass 3.0 TeV $g_V = 3$ ATLAS-CONE-2016-055 $HVT V' \rightarrow WH/ZH \mod B$ 2.31 TeV $g_V = 3$ multi-channe V' mass LRSM $W'_R \rightarrow tb$ LRSM $W'_- \rightarrow tb$ 1410,4103 2 b, 0-1 j Yes 20.3 1.92 TeV 0 e, µ ≥1b,1J 20.3 76 TeV 1408.0888 2 i 15.7 19.9 TeV mu = -1 ATLAS-CONF-2016-069 CI agga CI ((aa 2 e, µ 3.2 25.2 TeV ML = -1 1607.03569 CI uutt 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 20.3 4.9 TeV $|C_{AR}| = 1$ 1504 04605 Axial-vector mediator (Dirac DM) g_=0.25, g_=1.0, m(y) < 250 GeV 1604.07773 0 c. u Yes 1.0 TeV Axial-vector mediator (Dirac DM) 0 e, µ, 1 3 3.2 710 GeV ge=0.25, g.=1.0, m(x) < 150 GeV 1604.01306 ZZ_{XX} EFT (Dirac DM) 0 e, µ Yes 3.2 550 GeV m(v) < 150 GeVATLAS-CONF-2015-080 Scalar LQ 1st oen 20 Q mas Scalar LQ 2rd gen 2 4 3.2 Q mass 1.05 Te 1605.06035 Scalar LQ 3rd gen ≥1 b, ≥3 j Yes 20.3 $\vec{n} = 0$ 1508.04735 VLQ $TT \rightarrow Ht + X$ ≥ 2 b. ≥ 3 i Yes 20.3 855 GeV T in (T.B) doublet 1505.04306 $VLQ YY \rightarrow Wb + X$ 1 0.0 ≥ 1 b, ≥ 3 j Yes 20.3 770 GeV Y in (B,Y) doublet 1505.04306 $VI \cap BB \rightarrow Hb \pm X$ > 2 b > 3 i Vac 20.3 735 GeV isospin singlet 1505 04306 2/≥3 e,µ B in (B.Y) doublet $VI \cap BB \rightarrow Zb + X$ >2/>1 b 20.3 755 Ge VLQ QQ → WaWa 1509.04261 ≥4i Yes 20.3 VLQ $T_{5/3}T_{5/3} \rightarrow WrWr$ 2(SS)/≥3 e.µ ≥1 b, ≥1 j Yes 3.2 ATLAS-CONE-2016-012 000 Gal Excited quark $a^* \rightarrow a_1$ 32 4.4 TeV only a^* and d^* , $\Lambda = m(a^*)$ 1512.05910 Excited quark a" -> ag 2í 15.7 only a^* and d^* , $\Lambda = m(a^*)$ ATLAS-CONF-2016-069 Excited quark b* -> by 1 b, 1 j 8.8 2.3 TeV ATLAS-CONF-2016-060 Excited quark $b^* \rightarrow W^*$ 1 or 2 e, µ 1 h. 2-0 i Yes 20.3 1510.02664 5 TeV Excited lepton (* 3 e.u 20.3 $\Lambda = 3.0 \text{ TeV}$ 1411.2921 Excited lepton v* 3 e, µ, τ 20.3 .6 TeV $\Lambda = 1.6$ TeV 1411.2921 $I STC a_X \rightarrow W_X$ Vices 20.3 1407 8150 LRSM Majorana y 2 i $m(W_{0}) = 2.4$ TeV, no mixing 1506.06020 20.4 20.3 2.0 TeV Higgs triplet $H^{\pm\pm} \rightarrow cc$ 2 + (99) 13.9 570 GeV DY production, BR(H^{±±} → ee)=1 ATLAS COME 2018 OG1 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ DY production, BR($H_1^{++} \rightarrow \ell \tau$)=1 3 e, µ, τ 20.3 1411 2021 Monotop (non-res prod) 1 e, µ Vac 20.3 $a_{\rm non-no}=0.2$ 1410 5404 Multi-charged particles DY production, lot - 5e 1504.04188 20.3 Magnetic monopoles DY production, |g| = 1go, spin 1/2 1509.08059 7.0 $\sqrt{s} = 8 \text{ TeV}$ √s = 13 TeV 10^{-1} 5 10

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. +Small-radius (large-radius) jets are denoted by the letter j (J)

ATLAS Preliminary

 $\int f dt = (3.2 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Mass scale [TeV]

- Excellent LHC performance!
- ATLAS has a wide BSM physics program, scrutinizing each corner of the phase space
- As for today, (unfortunately) no evidence of SUSY or other BSM particles
- New limits significantly extend the Run 1 results \rightarrow check out also the ATLAS public page
- Exciting future in front of us: at the end of the LHC Run-2 expect 120-150 $\rm fb^{-1}$ and by 2035 \sim 3000 $\rm fb^{-1}$ of data!

BACKUP

◆□ → ◆部 → ◆言 → ◆言 → ○へ (~ 28 / 27

SEARCH FOR SUSY WITH MULTI-JETS FINAL STATES, $2 \rightarrow 6$ JETS

- Most significant excess across m_{eff} -based SRs occurs in SR Meff-2j-2100 (LHS plot, a significance of 2.14 standard deviations)
- In RJR-based SRs, most significant excess RJR-S1a (RHS plot, 2.22σ)

SEARCH FOR SUSY WITH MULTI-JETS FINAL STATES

Final states with 0-leptons and $7 \rightarrow 11$ jets CONF note

- Discriminants: E_T^{miss} over sqrt of sum of jets $p_T(H_T)$, sum of the large-R Jets mass (M_L^{\sum})
- Main backgrounds: multi-jets, $t\bar{t}$ and W+jets processes
 - Multi-jets: using a data template fit method (LHS plot)
 - $t\bar{t}$ and W+jets: MC normalized in dedicated CRs (middle & RHS plots, after norm)

Very good data-bkg estimation agreement in all CRs/VRs

Results in the SRs: uncertainties

≣ י? Q (? 31 / 27

・ロン ・四 と ・ ヨ と ・ ヨ と

SEARCH FOR SUSY WITH MULTI-JETS FINAL STATES

Results in the SRs: data observation vs. background estimation

- Largest discrepancy from the SM prediction is a deficit in the 9j MJ500 SR (statistical significance around 1.8σ)
- Similar deficits are observed in other MJ SRs, but the large overlap between these SRs implies that the deficits are strongly correlated

SUSY PARTICLE

Chiral supermultiplets

Gauge sm.

	Proper s	tates in	Sportners	Proper states in		
	interaction term	mass term	spartners	interaction term	mass term	
Leptons $S = 1/2$	$\begin{pmatrix} \nu_e \\ e_L \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu_L \end{pmatrix}$	$, e_R$ $, \mu_R$	Sleptons $S = 0$ $\begin{pmatrix} \tilde{\nu}_e \\ \tilde{e}_L \end{pmatrix}, \tilde{e}_R$ $\begin{pmatrix} \tilde{\nu}_\mu \\ \tilde{\nu}_\mu \end{pmatrix}, \tilde{\mu}_R$			
	$\begin{pmatrix} \nu_{\tau} \\ \tau_L \end{pmatrix}$	$, au_R$		$\begin{pmatrix} \widetilde{ u}_{ au} \\ \widetilde{ au}_L \end{pmatrix}, \widetilde{ au}_R$	$\widetilde{\tau}_1,\widetilde{\tau}_2,\widetilde{\nu}_\tau$	
Quarks $S = 1/2$	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix},$	u_R, d_R c_R, s_R	Squarks $S = 0$	$\begin{pmatrix} \widetilde{u}_L \\ \widetilde{d}_L \end{pmatrix}, \widetilde{u}_R, \widetilde{d}_R \\ \begin{pmatrix} \widetilde{c}_L \\ \widetilde{s}_L \end{pmatrix}, \widetilde{c}_R, \widetilde{s}_R \end{pmatrix}$		
	$\begin{pmatrix} t_L \\ b_L \end{pmatrix}$,	t_R, b_R		$\begin{pmatrix} \widetilde{t}_L \\ \widetilde{b}_L \end{pmatrix}, \widetilde{t}_R, \widetilde{b}_R$	$\widetilde{t}_1, \widetilde{t}_2, \widetilde{b}_1, \widetilde{b}_2$	
Gauge Bosons $S = 1$	W^{\pm}, W^0, B, g	W^{\pm}, Z^0, γ, g	$\begin{array}{l} \text{Gauginos} \\ S=1/2 \end{array}$	$\widetilde{W}^{\pm}, \widetilde{W}^0, \widetilde{B}, \widetilde{g}$	Gluino \tilde{g} Neutralinos	
$\begin{array}{l} \text{Higgs} \\ \text{Boson} \\ S = 0 \end{array}$	$\begin{pmatrix} H_u^+ \\ H_u^0 \\ H_u^0 \end{pmatrix}, \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	h^0, H^0, A^0, H^{\pm}	$\begin{array}{l} {\rm Higgsinos}\\ S=1/2 \end{array}$	$\begin{pmatrix} \widetilde{H}_u^+ \\ \widetilde{H}_u^0 \\ \widetilde{H}_u^0 \end{pmatrix}, \begin{pmatrix} \widetilde{H}_d^0 \\ \widetilde{H}_d^- \end{pmatrix}$	$\begin{array}{c} \chi_1^0, \chi_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0\\ \text{Charginos}\\ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm} \end{array}$	
Graviton S = 2	G		Gravitino $S = \frac{3}{2}$	$ ilde{G}$		

・ロン・(型)・・目と・目と、目、 の

33 / 27

CROSS-SECTIONS

