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Tensor Networks

» Powerful tools for many body quantum systems (e.g. reviews
arXiv:1306.2164; arXiv:0907.2796 )

» Low lying energy states occupy a small part of the Hilbert
Space

» Consider a 1d lattice with N sites

> Assign some Hilbert Space H; to each lattice, H = ); H;

» Generic State [¢0) = > Ciip.inlit, f2,- -, in)

» Break C into contraction of smaller tensors. e.g.
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Multiscale Entanglement Renormalization Ansatz (MERA)

» Can write down tensor network for a state at criticality (G.
Vidal arXiv:cond-mat/0512165)
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Multiscale Entanglement Renormalization Ansatz (MERA)

» Each tensor index can take values from 1 to x where x is
called the bond dimension

» Computationally efficient ansatz (Vidal cond-mat/0512165,
Pfeifer, Evenbly, Vidal arXiv:0810.0580)

» Good approximation for ground state of quantum systems at
criticality (Rel. Err < 3 x 107%).

> Produce the correct 2 point and 3 point functions.

» Can numerically find the central charge, OPE coefficients and
scaling dimensions.



AdS/CFT Correspondence

» Conformal Field Theory (CFT) in d+1 dimensions is dual to
theory of (quantum) gravity in d+2 Anti-de Sitter space.

=
CFT

» Ryu-Takayanagi Formula

Scrr(7) = % (1)

where A, is the minimal surface bounding region y on the
boundary.



Is MERA related to AdS/CFT?

» MERA is good at
approximating CFT ground
states, is it related in any
way to AdS?

» The network “looks like" a
discretization of AdS with
some UV cut off at a lattice
spacing.




MERA and AdS/CFT

» “RT formula” in MERA,

S(Z)MERA ~ Iog(ﬁ) ~ # bond X log x

(2)

» The minimal surface is given by the one with least number of

bond cuts



Consistency Conditions

» Suppose MERA describes a valid AdS/CFT correspondence

» Needs to satisfy at least certain properties of CFT
e.g. for some 14+1d CFT with central charge ¢

S(K)MERA = SCFT(E) = % Iogﬁ (3)

in the limit for £ = xp/a large (a is UV cut off for CFT)

> Needs to satisfy certain properties of AdS
e.g. the graph discretization has to capture features of AdS

> In particular, consistent with our current understanding of
gravity (satisfies covariant entropy bound)



Consistency Condition on Central Charge

Construction:

k to 1 MERA

Assume scale and translational invariance

Hilbert space V with dim V = x for each boundary lattice site
Same bond dimension x and tensors

v

v

v vy

» Can obtain an upper bound for Syegra(¢) following 1310.8372
Smera(f) < 4(k — 1) log,(£) log(x) (4)
» Combined with Syera(f) = Scrr(£) = 5 log(¢) for £ large
» Then
c <12(~—-)logx (5)

In k



Limits on sub-AdS Scale Physics

» Naively would want discretization to correspond to scale in
the UV

> Intuitively, with the fixed discretization, bond length is
necessarily L or larger. (Swingle 0905.1317, Hartman,
Maldacena 1303.1080)

> In 1504.06632 we do a more rigorous matching of AdS and
graph geodesics

» In order to have consistent bulk AdS ,

» Each bond length has to be AdS scale L or larger
» Get consistent bulk physics only on scales much larger than L.



Do we have consistent bulk Quantum States?

» Assume correspondence, contrain on bulk states in bulk
Hilbert space Hpuik = Hboundary

» Roughly speaking, we can assign Hilbert space W,k where
dim Vpuik = (k — 1)x at each bulk lattice site.

> Trace out a ball-shaped region B in the bulk, find its
entanglement entropy



Constraints from Bousso Bound

» For a static geometry, Bousso Bound (1404.5635, 1406.4545)
reduces to S(B) < 4AG.

» (Bousso hep-th/0203101) Entropy of a system which we only
know boundary area A is Indim Hg. So we have

A L
i < — —
IndimHpg < elalte (6)

» Combined with the bound on central charge, we have
k? In(k)
— <1 7
2(k—1)2 — (7)

cannot be satisfied by any k > 2.

> If we allow ancillae to be entangled, the bound is relaxed and
k =2,3,4 are allowed.



Conclusions and Outlook

» MERA appears to offer a more controlled version of AdS/CFT

» bond dimension exponentially large in ¢, no natural
requirement for large ¢ in MERA to yield classical geometry
» No sub-AdS Physics
» cMERA
» Local expansion of tensors into TN of other discretizations
» Seems that there is no consistent AdS/MERA in this
construction
» Allow entangled ancillae and identify them as bulk dof
» Exact Holography Mapping (Qi 1309.6282)
» Is MERA the space of geodesics in AdS? (Czech et al.
1505.05515 & Upcoming paper)
» cMERA (Nozaki et al 1208.3469, Mollabashi et al
arXiv:1311.6095, Miyaji et al, 1506.01353)



Thank You



MERA and AdS/CFT

» MERA tensor network reproduces discretized bulk AdS. (B.
Swingle 0905.1317, 1209.3304)

» ~ L (AdS radius) for each bond in the network and match
geodesics

» For a geodesic connecting points x, y on the boundary where
|x — y| > (lattice spacing), get d(x,y) ~ 2log|x — y| simply
by bond counting

» On the other hand, from properties of MERA

(Oa(x)0ay)) = Ix —y[722 (8)

» From AdS/CFT: (Oa(x)Oa(y)) ~ exp(—Ad(x,y))
therefore d(x,y) ~ 2log|x — y|, consistent with bond
counting.



Other Evidence for AdS/MERA

» MERA as RG flow (Molina-Vilaplana 1109.5592)

» Finite temperature MERA and BTZ black hole (e.g. Swingle
0905.1317, Matsueda, Ishihara, Hashizume 1208.0206,
Molina-Vilaplana, Prior 1403.5395)

» Continuous MERA (cMERA) (Nozaki et al 1208.34609,
Mollabashi et al arXiv:1311.6095, Miyaji et al, 1506.01353)
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