Consistency Conditions for an AdS/MERA Correspondence

arXiv:1504.06632

Ning Bao, ChunJun Cao, Sean M. Carroll, Aidan Chatwin-Davies, Nicolas Hunter-Jones, Jason Pollack, Grant Remmen

Walter Burke Institute for Theoretical Physics, California Institute of Technology

CAP Congress 2015, University of Alberta

Outline

Tensor Network

Multiscale Entanglement Renormalization Ansatz (MERA) MERA Properties

MERA and AdS/CFT

AdS/CFT Correspondence An AdS/MERA Correspondence

Consistency Conditions For AdS/MERA

Bound on central charge No Sub-AdS Physics Bulk States and Hilbert Space Constraints from Bousso Bound

Conclusions and Outlook

Tensor Networks

- Powerful tools for many body quantum systems (e.g. reviews arXiv:1306.2164; arXiv:0907.2796)
- Low lying energy states occupy a small part of the Hilbert Space
- Consider a 1d lattice with N sites
- ▶ Assign some Hilbert Space \mathcal{H}_j to each lattice, $\mathcal{H} = \bigotimes_j \mathcal{H}_j$
- Generic State $|\psi\rangle = \sum C_{i_1 i_2 \dots i_N} |i_1, i_2, \dots, i_N\rangle$
- ▶ Break C into contraction of smaller tensors. e.g. $(C_{i_1...i_N} = A_{i_1}^{\alpha_1\alpha_2}A_{i_2}^{\alpha_2\alpha_3}...A_{i_N}^{\alpha_N\alpha_1})$

Multiscale Entanglement Renormalization Ansatz (MERA)

► Can write down tensor network for a state at criticality (G. Vidal arXiv:cond-mat/0512165)

Multiscale Entanglement Renormalization Ansatz (MERA)

- ▶ Each tensor index can take values from 1 to χ where χ is called the bond dimension
- Computationally efficient ansatz (Vidal cond-mat/0512165, Pfeifer, Evenbly, Vidal arXiv:0810.0580)
- ▶ Good approximation for ground state of quantum systems at criticality (Rel. Err $< 3 \times 10^{-4}$).
- Produce the correct 2 point and 3 point functions.
- Can numerically find the central charge, OPE coefficients and scaling dimensions.

AdS/CFT Correspondence

► Conformal Field Theory (CFT) in d+1 dimensions is dual to theory of (quantum) gravity in d+2 Anti-de Sitter space.

Ryu-Takayanagi Formula

$$S_{CFT}(\gamma) = \frac{A_{\gamma}}{4G} \tag{1}$$

where A_{γ} is the minimal surface bounding region γ on the boundary.

Is MERA related to AdS/CFT?

- MERA is good at approximating CFT ground states, is it related in any way to AdS?
- The network "looks like" a discretization of AdS with some UV cut off at a lattice spacing.

MERA and AdS/CFT

"RT formula" in MERA,

$$S(\ell)_{\mathsf{MERA}} \sim \log(\ell) \sim \# \mathsf{bond} \times \log \chi$$
 (2)

► The minimal surface is given by the one with least number of bond cuts

Consistency Conditions

- Suppose MERA describes a valid AdS/CFT correspondence
- Needs to satisfy at least certain properties of CFT e.g. for some 1+1d CFT with central charge c

$$S(\ell)_{\text{MERA}} = S_{\text{CFT}}(\ell) = \frac{c}{3} \log \ell$$
 (3)

in the limit for $\ell = x_0/a$ large (a is UV cut off for CFT)

- Needs to satisfy certain properties of AdS
 e.g. the graph discretization has to capture features of AdS
- ► In particular, consistent with our current understanding of gravity (satisfies covariant entropy bound)

Consistency Condition on Central Charge

- Construction:
 - ▶ k to 1 MFRA
 - Assume scale and translational invariance
 - ▶ Hilbert space V with dim $V = \chi$ for each boundary lattice site
 - Same bond dimension χ and tensors
- ▶ Can obtain an upper bound for $S_{MERA}(\ell)$ following 1310.8372

$$S_{MERA}(\ell) \le 4(k-1)\log_k(\ell)\log(\chi) \tag{4}$$

- ▶ Combined with $S_{MERA}(\ell) = S_{CFT}(\ell) = \frac{c}{3} \log(\ell)$ for ℓ large
- Then

$$c \le 12(\frac{k-1}{\ln k})\log \chi \tag{5}$$

Limits on sub-AdS Scale Physics

- Naively would want discretization to correspond to scale in the UV
- ▶ Intuitively, with the fixed discretization, bond length is necessarily L or larger. (Swingle 0905.1317, Hartman, Maldacena 1303.1080)
- ► In 1504.06632 we do a more rigorous matching of AdS and graph geodesics
- ▶ In order to have consistent bulk AdS ,
 - Each bond length has to be AdS scale L or larger
 - ► Get consistent bulk physics only on scales much larger than *L*.

Do we have consistent bulk Quantum States?

- Assume correspondence, contrain on bulk states in bulk Hilbert space $\mathcal{H}_{\text{bulk}} = \mathcal{H}_{\text{boundary}}$
- ▶ Roughly speaking, we can assign Hilbert space V_{bulk} where dim $V_{\text{bulk}} = (k-1)\chi$ at each bulk lattice site.

► Trace out a ball-shaped region \mathcal{B} in the bulk, find its entanglement entropy

Constraints from Bousso Bound

- ▶ For a static geometry, Bousso Bound (1404.5635, 1406.4545) reduces to $S(\mathcal{B}) \leq \frac{A}{4G}$.
- ▶ (Bousso hep-th/0203101) Entropy of a system which we only know boundary area A is $\operatorname{Indim} \mathcal{H}_{\mathcal{B}}$. So we have

$$\ln \dim \mathcal{H}_{\mathcal{B}} \le \frac{A}{4G} \propto \frac{L}{G} \tag{6}$$

Combined with the bound on central charge, we have

$$\frac{k^2 \ln(k)}{2(k-1)^2} \le 1 \tag{7}$$

cannot be satisfied by any $k \ge 2$.

▶ If we allow ancillae to be entangled, the bound is relaxed and k = 2, 3, 4 are allowed.

Conclusions and Outlook

- MERA appears to offer a more controlled version of AdS/CFT
- ▶ bond dimension exponentially large in c, no natural requirement for large c in MERA to yield classical geometry
- No sub-AdS Physics
 - cMERA
 - Local expansion of tensors into TN of other discretizations
- Seems that there is no consistent AdS/MERA in this construction
 - Allow entangled ancillae and identify them as bulk dof
 - Exact Holography Mapping (Qi 1309.6282)
 - ► Is MERA the space of geodesics in AdS? (Czech et al. 1505.05515 & Upcoming paper)
 - cMERA (Nozaki et al 1208.3469, Mollabashi et al arXiv:1311.6095, Miyaji et al, 1506.01353)

Thank You

MERA and AdS/CFT

- MERA tensor network reproduces discretized bulk AdS. (B. Swingle 0905.1317, 1209.3304)
- ~ L (AdS radius) for each bond in the network and match geodesics
- ▶ For a geodesic connecting points x, y on the boundary where $|x y| \gg$ (lattice spacing), get $d(x, y) \sim 2 \log |x y|$ simply by bond counting
- On the other hand, from properties of MERA

$$\langle \mathcal{O}_{\Delta}(x)\mathcal{O}_{\Delta}(y)\rangle \approx |x-y|^{-2\Delta}$$
 (8)

► From AdS/CFT: $\langle \mathcal{O}_{\Delta}(x)\mathcal{O}_{\Delta}(y)\rangle \sim \exp(-\Delta d(x,y))$ therefore $d(x,y)\sim 2\log|x-y|$, consistent with bond counting.

Other Evidence for AdS/MERA

- ► MERA as RG flow (Molina-Vilaplana 1109.5592)
- ➤ Finite temperature MERA and BTZ black hole (e.g. Swingle 0905.1317, Matsueda, Ishihara, Hashizume 1208.0206, Molina-Vilaplana, Prior 1403.5395)
- Continuous MERA (cMERA) (Nozaki et al 1208.3469, Mollabashi et al arXiv:1311.6095, Miyaji et al, 1506.01353)