SNO+ Using ⁶⁰Co as a high precision calibration device

Logan Sibley

University of Alberta

on behalf of the SNO+ Collaboration CAP Congress 2015 Edmonton, AB 17 June 2015

SNO+ will be one of the world's largest liquid scintillator particle detectors

12 m diameter acrylic vessel

Filled with 780 t liquid scintillator

Buoyed by 7000 t ultra-pure water

Viewed by nearly 9500 PMTs

All **6800 ft** underground

As its main physics goal

SNO+

will be searching for neutrinoless double beta decay

(see talk by S. Bilenky in Session M1-6)

Add 0.3%–0.5% (>2.3 t) of natural Te, or **800 kg** ¹³⁰**Te** into the SNO+ liquid scintillator

A large active mass means a high number of statistics (many decays)

Spectral fitting helps compensate for limited inherent energy resolution of liquid scintillators

A high 34.1% natural abundance and 2.53 MeV Q-value make ¹³⁰Te an excellent choice

Light yield nearing 10,000 photons/MeV

4.5% energy resolution at the ¹³⁰Te Q-value

Attenuation length ~20 m

Potential α/β discrimination

Environmentally safe

Chemically **compatible** with acrylic (i.e. SNO+)

Stable over time for ^{nat}Te levels of up to 3%

(solvent) (fluor) (isotope)

Linear alkylbenzene (LAB) + 2 g/L 2,5-diphenyloxazole (PPO) + nat Te

(+ surfactant + water + wavelength shifter)

A suite of **Calibration sources** are being designed to help understand the response of the LAB scintillator cocktail

Radioactive sources will characterize the **energy scale** and **resolution** to different particles over a range of energies

Optical calibration sources (LED/Laser fibres, diffuse laser source, Čerenkov source) to measure scintillator scattering and absorption, and PMT response (see talk by K. Singh in session M1-6)

Major upgrades to calibration hardware, as well

The ⁶⁰Co source is designed as a **tagged source**

The ⁶⁰Co source is designed as a **tagged source**

⁶⁰CoCl₂ is deposited on and embedded between small disks of plastic scintillator

The ⁶⁰Co source is designed as a **tagged source**

This is coupled to a small **PMT** that picks up scintillation in the plastic caused from the β released in 60 Co decay, while the two γ rays escape the source

The ⁶⁰Co source is designed as a

tagged source

The PMT is wrapped in a reflective layer, then soldered *in situ* into a

leak-tight

copper enclosure, then

The ⁶⁰Co source is designed as a

tagged source

Encapsulated

in a secondary plastic enclosure, for redundancy in preventing release of radioactive contamination into SNO+

The ⁶⁰Co source is designed as a

tagged source

Each step of the process undergoes rigourous

testing to ensure quality control

The source activity has been

precisely measured

using a high purity germanium detector

This low-rate source has an activity of 225 ± 8 Bq

This is a Monte Carlo representation of

what SNO+ expects

to observe with 5 years of data, assuming various background constraints
See talk by A. Hallin in Session M1-6

The 60 Co calibration source

will help set the energy scale and aid in understanding the shape of the expected 4.5% energy resolution at 2.5 MeV

 $0\nu\beta\beta$ (200 meV)

Chain

Th Chain

External

BνES

Cosmogenic

Residuals Co Calibration

 (α, n)

THANKS

