

High Voltage studies with Xe-129 for an nEDM experiment at TRIUMF

Katerina Katsika

CAP Congress Edmonton Jun 15-19, 2015

Talk layout

- Spin precession frequency of neutrons in the presence of magnetic (B) electric (E) fields
- Using ¹²⁹Xe/ ¹⁹⁹Hg co-magnetometer to monitor the B-field changes
- Investigating the dielectric properties of ¹²⁹Xe in the 1 mTorr range
- High voltage setup at TRIUMF
- Current status and next steps
- Summary

Spin precession frequency of neutrons in the presence of magnetic (B) and electric (E) fields

spin
$$\vec{B}$$

$$+(\frac{1}{2})$$

$$-(\frac{1}{2})$$
 $\omega_{o} = -2 \frac{\mu B}{\hbar}$

$$\vec{E} \uparrow \uparrow \vec{B}$$

$$\omega(E||B) = -2 \frac{\mu B}{\hbar} \left(-2 \frac{dE}{\hbar} \right)$$

 ω_{0} : Larmor frequency

μ : magnetic dipole moment (MDM)

d: electric dipole moment (EDM)

If
$$\Delta B = 0$$

But
$$\Delta B \neq 0$$

Upon
$$\vec{E}$$
 reversal: $\delta v_o = \frac{-4 dE}{h}$

$$2\mu \frac{\Delta B}{\hbar} = \frac{4 dE}{\hbar} \Rightarrow \Delta B = 40 fT$$

(over 10,000 runs if $d = 10^{-27} e \cdot cm$ and E=10 kV/cm)

Unknown magnetic field fluctuations can produce a false EDM signal

Using 199Hg co-magnetometer to monitor the B-field changes

- B-field fluctuations are one of the main sources of systematics
- An atomic co-magnetometer occupies the same space with neutrons and can accurately monitor the magnetic temporal changes

Using 199Hg co-magetometer to monitor the B-field changes

¹⁹⁹Hg co-magnetometer in the ILL/Sussex/RAL nEDM experiment

¹²⁹Xe compared to ¹⁹⁹Hg has:

Dual ¹²⁹Xe + ¹⁹⁹Hg co-magnetometer

- 1. neutron absorption $\sigma_{Xe} = \frac{1}{100} \sigma_{Hg}$
- 2. same sign of gyromagnetic ratio

Improve systematics by data cross checking

Using 129Xe co-magnetometer to monitor the B-field changes

- ★ 129Xe 2-photon emission
- * detect a ~ 900 nm emitted photon

Investigating the dielectric properties of Xe

Statistical sensitivity $\sigma_d \propto \frac{1}{E \cdot \sqrt{N}} \cdot \left(\frac{\hbar}{2 T}\right)$ E=Electric field N=neutron numb. density T_s = neutron storage time

F. Paschen 1889 (Wied. Ann., 37,69)

Lessons learnt:

- ► Keep it simple by minimizing interfaces
- Maximize the distance of the grounded parts from the high voltage feed-through
- ► Eliminate sharp edges/holes
- ► Remove metal and carbon depositions from the ceramic (sandblasting)
 - +smooth its surface

Load Cell 0-500 lbs (LCGB-500 Omega) http://www.omega.ca/pptst/LCGB.html

12/14

ANSYS Stress simulations

Sealing force ~ 500 lbs Ceramic tensile yield=1400 psi Safety factor = 6.2

<u>Current status + Next steps</u>

Current status:

- ✓ 100 kV with a steel ball in vacuum
- ✓ Most of the parts of the new setup are ready

Our next tests:

Assembly and test in vacuum and with gas

Next R&D steps:

• Study different geometries and materials for the electrodes to deliver as high as possible electric field.

Summary

R&D work is carried out at TRIUMF to develop the high voltage system for the nEDM experiment which will deliver an electric field:

- $E \sim 12 \text{ kV/cm}$
- Uniform $[(E_{transv}/E)_{max} = 1\%]$
- Stable

..across the neutron storage cell in the presence of ¹²⁹Xe (and possibly ¹⁹⁹Hg) co-magnetometer.

Backup slides

Next steps / Trench+O-ring groove geometry

Next steps / Trench+O-ring groove geometry

For r=5 mm, d=5 mm: 0 < s < 2 mm

For r=5 mm, d= 5 mm, s=1mm: $0 < \alpha < 10^{\circ}$

neutron Electric Dipole moment

Initially neutron spin is aligned with Bo

"Spin up"

RF pulse on xy-plane near Larmor frequency

Bo

Accumulated phase: $\varphi = (\omega - \omega_o) t_{ph}$ **E** or

Depending on the accumulated phase the Second RF pulse will turn the spin up or down

Second π/2 spin-flip pulse

N. F. Ramsey, Phys. Rev. 76 996 (1949)

Correction of the B-field fluctuation effect on neutron resonance frequency with the ¹⁹⁹Hg co-magnetometer

- A. ¹⁹⁹Hg atoms are polarised along z.
- B. A transverse RF pulse at 199 Hg resonance frequency forces the spins to precess on the xy-plane (8 Hz at 1 μ T)
- C. A beam of polarised light from ²⁰⁴Hg discharge lamp traverses the cell in the x-direction. Its absorption depends on the x-component of the spin polarisation which varies sinusoidally with time at the Larmor frequency (10-100 fT resolution).

S. K. Lamoreaux 1989 Nucl. Instrum. Methods A284 43c Green et al. Nucl. Instr. Meth. Phys. Res. A404, 381 (1998)

¹²⁹Xe compared to ¹⁹⁹Hg has:

- 1. 100 times smaller neutron absorption cross section
- 2. Same sign of gyromagnetic ratio with neutron
- 3. 129 Xe atomic EDM limit is very close to that of neutron (2.9×10 $^{-26}$ e ·cm):

$$d_{Xe-129} < (0.7 \pm 3.3 \pm 0.1) \cdot 10^{-27} \text{ e} \cdot \text{cm}$$

Needs to be improved by at least one or even better by two orders of Magnitude. Need to conduct ¹²⁹Xe atomic EDM measurement using the ¹⁹⁹Hg as co-magnetometer

- 1/ Improve systematics by data cross checking
- 2/ Easy implementation as the laser requirements are quite similar (the transition lines are ¹⁹⁹Hg: 253.7 nm ¹²⁹Xe: 252.4 nm)

1st attempt: lessons learnt

ETRIUMF

High voltage setup at TRIUMF

10

High voltage setup at TRIUMF

Aluminum corona ring (not polished) in air within a wide Faraday cage (R_{cage} ~ 2.5R_{cor. ring}

Reached feedthrough Voltage specification (100 kV)

To a GAMMA
125 kV
Power Supply
(neg. Voltage)

FEMM

simulations

Add an in-line 1 $G\Omega$ resistor to minimize energy dissipation in the event of a breakdown

Stored energy @ 100 kV = 12.4 J

In-line resistor

Power Supply

nEDM experiment layout

