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Introduction

Brane-world scenarios offer paradigms to reinterpret the 4-D
Planck scale as an effective gravity scale arising from a more
fundamental lower gravity scale in higher dimensions.

Allows new phenomenological models to be developed and helps guide
searches for low-scale gravity in experiments, such as, at the LHC.

An exciting outcome of these models is the possibility to produce
non-perturbative gravitational states at the LHC.

LHC experiments have recently published a round of searches for
non-perturbative gravitational states which seriously confront the
models for the first time.

How can the models now be viewed in light of the experimental
constraints?
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[ Paradigms for low-scale gravity ]

e Extra dimensions:
= Large flat extra dimensions (LED): Arkani-Hammed, Dimopoulos, Dvali (ADD).
= A warped extra dimension in AdS space: Randall-Sundrum (RS1).

= Universal extra dimensions (not discussed here).
e Large number of particle species (messenger particles).

o Ingeneral, heed something to reduce the Planck scale M, to a lower
gravity scale M«: M, >> M.

MPZ = V6 M.2+0 in ADD (M* = MD)
M2 = N M.2 in Dvali (particle species)
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Models usable at the LHC

Classical (semi-classical) black holes.
= Let's call them GR black holes.

String balls.

Non-thermal black holes:
= Often called quantum black holes or QBH.
= Let's use QBH for short-form.

Non-commutative gravity embedded into ADD.

Trapped surface calculations: not used yet.

Split-fermion models: not used yet.
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[ Which Planck scale? ]

e What should we take as the limits on the fundamental
Planck scale My?

e Virtual graviton emission depends on ultra-violet cutoff
M., which is not M;,.

e Real graviton emission depends on My: mono-jet and
mono-photon searches.

= But is this the scale for GR and non-thermal black holes?

e Limits from classical black hole searches: My function
of M,, (mass threshold).

e Limits from non-thermal black hole searches: My = M.
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Best limits on Planck scale

CMS mono-jet (My > 3.26-5.61 TeV, 6 = 6-2)
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Most calculations assuming My = 1 TeV should be revised.
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[Sear‘ches for non-perturbative sTates]

e ATLAS and CMS have performed searches for non-perturbative states.

e I will divide searches into thermal (GR) and non-thermal (QBH) "black
holes”.

e Thermal black holes (GR) and string balls searches:
= multi-jet (ATLAS and CMS)
= lepton+jets (ATLAS: electron and muon)
= same-sign di-muon and large number of tracks (ATLAS)

e Non-thermal black hole (QBH) searches:
= di-jet (ATLAS and CMS)
= photon+jets (ATLAS)
= di-lepton (ATLAS: di-electron and di-muon)
= lepton+jets (ATLAS: electron and muon)
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[ Thermal (GR) black holes ]

e Classical (semi-classical) black holes:

= The key feature is Hawking evaporation (so they are thermal states).
= Model valid for E > M, » M.

= No predictive power of what we would see first at the LHC.
+ Best to look for ADD perturbative states (KK gravitons, etc.).

e Hawking evaporation to high multiplicity of high-p; particles (mostly
jets).

e High-p+ lepton should be emitted in a significant fraction of the events.

= Requiring a high-p lepton significantly reduces QCD background.

e Artificial mass threshold M,, introduced to keep black holes classical.
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[ Model-independent limits ]

£1zillIIIIIIIIIHllllllllllllllllllll HT:ZPT(JZTS)

< B Expected 20

N i " Expected =10 G 50
= 10} N .=>3 ---Expected > b
EI - i jet —Observed % *

n i 1] 10"
T 8 :

5 ATLAS

6 g

's=8 TeV, 20.3 fb’

M>HL|

Pythia8

95% CL upper limits

ATLAS Simulation Internal

|\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\
190 15 20 25 30 35 40 45 50

5
H. [TeVic]
O|||||||||||||||||||||||| IIIIIIIIIIIIII
3.03.23.43.63.84.0424.4 4645850 6<0.16 fb
. Hy>4.3 TeV
arXiv:1503.08988 H.™ [TeV]

18 June 2015 Doug Gingrich (R1-5, DPT, CAP, Edmonton, Alberta) 9/20




| 6R black holes not allowed at LHC |
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[ String balls ]

e Embed weakly-coupled string theory into ADD.

e Changes cross-section, but leaves decays similar to
thermal black holes (different temperature).

e Introduces another scale (string scale) that allows
E >M, »M,and My> M.,

e Readlly just pushes the problems of classical black

holes to higher energies at the expense of more
speculation (low-scale string theory).
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| Non-thermal black holes (QBH) |

e LHC parton energy needs to be high relative to My for
black holes to Hawking evaporate thermally.

e Black holes with threshold mass M,, near M probably do
not decay thermally.
e Non-thermal black holes:
= Extrapolate classical cross section down to Planck scale.
= Replace Hawking evaporation (thermal decay) by particle decays.
= Branching fractions determined by conservation principles.
= Or, extrapolation of Hawking evaporation

+ Not really non-thermal in this case.
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Non-thermal black hole searches
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[ What we think we know ]

e A search for non-perturbative gravity is enabled by the
highest energies, not high luminosity.

e Instant discovery physics at new energy turn-on:
= If the LHC energy is near the new gravity scale.

e Of course this could be wrong and black holes could be

produced at some low rate at our current energies, or in
some other signature.

= Trap-surface models may reduce the cross section.
= Split-fermion models may reduce the cross section.

= One of the only models that could predict new signatures, that I
know of , is hon-commutative geometry black hole models.
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Trapped energy estimates ]
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[ Split fermion pp cross section ]
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[ Non-commutative geometry

e Non-commutative gravity embedded into ADD:

= Has hopefully some aspects of a theory of quantum gravity.

= Model exits and gives rather different signatures then
usual models.

Main experimental
differences from GR
black holes:

= Larger missing energy.

= Soft = p; spectra.

Possible trigger issues.
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[ How we do things ]

e In most cases, searches are performed in the = p; variable.
= X pyis not directly related back to theory.
= Determine fiducial cross-section lower limit above some = p+ value.

= No good method for removing model-dependence and making results
generic.

e Model-dependent limits.
= Set limits in 2-D parameter space (My,M;,).
= Fix the other parameters and called this a model (not unique).
= Lower mass limits for a given (arbitrary) My and model.

= Allows some general conclusions and comparisons, but still involves a
wide range of mass limits to be set.
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Summary

About 9 LHC publications.

Thermal black holes

= Black holes probably excluded at the LHC.
= But maybe not string balls yet at 14 TeV.

Non-thermal black holes

= Di-jet most powerful channel.

= LFV (lepton flavour violating) channel also interesting.
Low-scale gravity studies benefit more from increased LHC
energy than luminosity.

= For nominal models.

= Quantum gravity effects, or others, may cause cross sections to be lower.

Phenomenology should be rewritten with My > 3 TeV (c.f. 1 TeV).

= It makes difference.
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[ History ]

o 1998-99: Low-scale gravity thought to be possible in brane-
world scenarios.

e 1999: First low-scale gravity models of perturbative KK states.
e 2001: First low-scale gravity models of thermal black holes.

e 2008: Other low-scale non-perturbative gravity models:

= string-balls.
= non-thermal black holes (QBH).

e 2010: Even non-commutative black holes.
e 2010-11: First LHC search results.
e 2015: Complete LHC results at 8 TeV.
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[ Large flat extra dimensions: ADD ]

e Fields of the standard model confined to a 4-D membrane.

e Gravity propagates in several additional spatial dimensions
which are large compared to the Planck scale.

o The power-law of gravity changes at small distances.

M2 = Vy Mp2*

black hole

Extra-Dimensions

A0 Hisserfoloed
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[ Warped extra dimension: RS ]

e A warped extra dimension in AdS space: RS1.

e Standard model particles localized on 4-D brane.

/ ,\(],\‘5
M2 = (k2x.3/m %) Ms3

Planck TeV
" \ Can tread RS black hole like
/ ADD black hole in 5-D with
-
L

M = ml/(xl C2/3),' C = k/Mp

modified mass.
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[Non-per’rurbative gravitational sTaTes]

e Way of thinking is slightly different than main-stream particle physics.
e Particle physicists are use to searching for new particles.

= Need quantum mechanics and special relativity to describe them.

= For calculations, usually have a Lagrangian in field theory, and use perturbative
techniques to expand in a series of Feynman diagrams.

e States with energy above the gravity scale (fransplanckian scale physics)
should behave non-perturbatively.

m Classical (semi-classical) mechanics should hold.

= Being non-perturbative, expansions in a coupling constant and Feynman
diagrams do not make much sense.

o Like particle searches, we usually think of one force (in this case gravity)
dominating the interaction and ignore the others (in this case QCD).

e Soalot of the QCD issues (LO, NLO, NNLO, etc.) make little sense for
non-perturbative gravitational states.
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[ Monte Carlo event generators

e Charybdis?
= GR black holes (string balls added).
= Thermal QBH possible but never tried.

= Code extended to non-commutative black holes.

e BlackMax

= GR black holes (string balls added).
= Thermal QBH used in ATLAS di-jet searches.

= Split-fermion models possible.

e QBH

= Non-thermal black holes.
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Non-thermal quantum black limits
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QBH 13 TeV predictions
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[ Black hole parton cross section ]

o Typically a total inelastic o = nir 2 form is used for the
parton-parton cross section.

e All energy of partons goes into producing the black hole.

e Various GR calculations estimate the amount of energy in a
parton-parton collision trapped behind the horizon formed.
= Analytical lower-bounds for 4-D black holes.
= Numerical lower-bounds for higher-dimension black holes.

e The excess energy "appears” as radiation.
= Initial-state radiation, if before black hole formation.
= Balding radiation, if after black hole formation.

e In the former case, less energy is available for black hole
formation and the cross section is reduced.
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Split-fermion models ]

Mechanism for generating Yukawa hierarchies by displacing
the standard model fermion fields in a high-dimensional
space.

= Overlap of wave functions gives couplings.

A set of spacings giving masses consistent with data has
been determined in a 2-D split-fermion model.

Can embed black holes and string balls in split-fermion
models.

Causes reduction in cross section relative to usual ADD
case.

Split-fermion models not yet used to interpret LHC results.
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[ Non-communative geometry ]

Non-communative geometry inspired black holes

e Smear matter distributions
with resolution of non-
communativity scale (extra
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[ Some “cheap” comments ]

e Use mass as limit setting (search) variable.
= This is related directly to theory.

= MET should also be used to account for neutrinos and
gravitons.

e Need better strategy for model-independent limits.

e Improvements to model-dependent limits:

= By and large, I think the models chosen are the useful
ones.

= Extend M; range.
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Summary of results to 2011
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