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Problems with Standard Model

Although the Standard Model has been enormously successful to date, we known it is incomplete.

It does not explain Dark Matter and Dark Energy:

Dark Matter

Dark Energy
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It does not explain matter and anti-matter asymmetry:
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Frontiers of BSM Physics Search

To look for New Physics beyond the
Standard Model, we use the
three-prong approach:

The Energy Frontier (high-energy
colliders)

Origin of Mass

The Intensity/Precision Frontier
(intense particle beams)

Origin of Universe

Unification of Forces

The Cosmic Frontier (underground BR.Lo.c.... N
experiments, ground and space-based
telescopes)
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Precision Frontier: (g-2),
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Known well Theoretical work ongoing
CONTRIBUTION RESULT (x 10™"") UNITS
QED (leptons) 116 584 718.09 #+ 0.14 + 0.04,
H\FP(]()) 6 914 :i: 42.‘.”, :t 14,-;,(1 :t TpQCD
HVP(ho) —98 + 1oy + 0.3,0a
105 &£ 26
152 +2+1

Total SM

116 591 793 £ 51

The “g-2 test”: Compare experiment to theory. Is SM complete?

661 NewPhysics

___Expt. Theory
=4, 4,

Aa =a ®r-a SM= 288(80)x10-" (3.60 discrepancy!)
Aa =a_ ®*P-a SM=-105(81)x10-14 (1000x more precise)
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3 Matter/Antimatter Asymmetry
b

~ ' ¥ Sakharov criteria for matter/anti-matter asymmetry:

WHERE IS THE ANTIMATTER?

WHAT WE SHNOULD SEE WHAT WE DO SEE

An equal amount of matter and Matter fills the universe while there is

® Baryon number violation smenattr i th uvrs. Gy rae amounts o it
e Cand CP violation ' '
e Thermal non-equilibrium

e (P violation so far only in weak decays.

¢ Might help explain BAU matter/anti-matter problem.

e Excellent probe for physics beyond the Standard Model
(complementary to LHC)



Standard Model: CP Violation

-
A nonzero particle EDM

violates P, T and, assuming
CPT conservation, also CP.

o J




Standard Model: CP Violation

-
A nonzero particle EDM

violates P, T and, assuming
CPT conservation, also CP.
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Standard Model: CP Violation
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violates P, T and, assuming
CPT conservation, also CP.

A nonzero particle EDM
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Phas f KM matrix:

1 —5,C

— 5,5

[Known from neutral K and B meson decays}
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NnEDM from CKM Matrix

*No tree level contribution
*No first loop contribution
*No pure week interaction two loop contribution
*Only gluon two loop contribution
— strongly suppressed
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NnEDM from CKM Matrix

u d d n

| Standard Model nEDM:
1039 e-cm > d,>1032e-cm

u d d

*No tree level contribution
*No first loop contribution
*No pure week interaction two loop contribution
*Only gluon two loop contribution

— strongly suppressed




Measurements of nEDM

First
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Precision scattering measurements

Beam electrons may interact with target electrons by exchanging a mediator particle:

fy photon (electromagnetic force)
ﬁ /. (weak force)

ﬁ /" (representing a yet-to-be discovered new force)

beam electron

c

target electron

Arr =
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Precision Scattering

* Many theories predict new particles, which disappeared at the time when the
universe cooled.

* New physics particles are now present indirectly as interaction carriers and can be
probed through precision measurements at low momentum transfer.

* To access the scale of the new physics at TeV level, we need to push one or more
experimental parameters to the extreme precision.

e Low-Q? neutral-current interaction becomes sensitive to the TeV scale if:

® 5(sinZBy) < 0.5% | ;

® away from the Z resonance

. . : : Lo
*Precision Neutrino Scattering

*New Physics/Weak-Electromagnetic Interference

® opposite parity transitions in heavy atoms
® parity-violating electron scattering

Weak interaction provides indirect access to the new physics via interference
terms between neutral weak and new physics amplitudes.



Weak Charge of Proton: Qweak

In SM at three level (Born):

Qw(p) =1— 4 sin® Oy

Since the value of the weak mixing angle is very close to 0.25,
weak charge of proton (and electron) is suppressed in the
SM, so Qw(p) and Qw(e) = - Qw(p) offer a unique place to
extract sin?Qw.

For proton (current Qweak at JLab, planned P2 at MESA in
Mainz):

| O —OR (’IYFQZ | 1 9 |
Va p— _ AW /P T 9
1er 0L T OR 4/ 27a [QH (p)+ FHE )]

Parity-violation effects are enhanced in atoms with a large number of protons (Z) and neutrons (N)
(parity-violation experiments with 2°°Bi, 205T1 and '33Cs):

(QU(Z *\*) — Z(l - 4,\111 HH ) N



Scale of BSM Physics in Weak Interactions

The low-energy effective electron-quark A(e) X V (q) Lagrangian:

__ pPV PV
L = Loy + Lxpw

Gp g°

pv. _ = — PV _ - q =
Loy = —\/56“/;1..“/56 § Ciqy 47"q Lnpw = 12 €V V5€ E :hfv q7 g
a f

where g is the coupling constant, A is the mass scale, and the hdy are the effective coefficients of
the new physics.

In SM at tree level:

w(SM) = —2(2C4, + Chy)

A precise measurement of Qw(p) would thus test new physics scales up to TeV scales:
A 1
p
9 \V2GHAQY
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Results from Qweak Experiment

Run 0 Asymmetry Results (4% of full data):

PVeS Experiment Summary

\“6‘0
E122
Q

Pioneering

Strange Form Factor (1998-2009)

S.M. Study (2003-2005)
JLab 2010-2012
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Apy

Beam energy at vertex , < Eeg >
Momentum transfer < Q2g >
Effective scattering angle, < O.g >

1.155 + 0.003 GeV
0.0250 + 0.0006 (GeV)?
7.90 £ 0.30°

Asp (< Q% >e) = —0.279 £ 0.035 (stat.) =4 0.031 (syst.) ppm

Qweak Collaboration: PRL 111, 141803 (2013)



Hadronic Corrections and Total Asymmetry

Model Dependent

Model Independent
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Using hadronic uncertainty analyzes for YZ box from M. Gorchtein, Phys. Rev. Lett. 102, 091806 (2009) and
A. Sibirtsev et. al., arXiv:1002.0740 [hep-ph], and applying full set of on-shell NLO contributions, we get
following PV electron-proton asymmetry:

Apy(™ = - 0.233 * 0.007 (ppm)
ApyEP) = - 0.279 * 0.035 (stat.) * 0.031 (syst.) (ppm)




Weak Formfactor and Weak Charge

PV _
H > [ClN(ue%%Ue) (any un) + Con (Ueyptie) (N y5un)]
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Precision Scattering: MOLLER

Asymmetry is an observable which is directly related to the interference term:

op —or _ 2Re(M, M} + M, M}, + MzMY p)Lr
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To access multi-TeV electron scale it is
required to measure:

6(sin” ) < 0.002

MOLLER experiment offers an unique
opportunity to reach multi-TeV scale and
will become complimentary to the LHC
direct searches of the new physics.



Precision Scattering: MOLLER

The first observation of Parity Violation in Mgller scattering was made by E-158

experiment at SLAC:

Q? = 0.026GeV?, Arr = (1.31 £ 0.14(stat.) £ 0.10(syst.)) x 10~7
sin?(fw ) = 0.2403 + 0.0013 in M S
0.250 ¢

— SM

e current A (lep) [Tevatron]
MOLLER, planned at JLab following the 11 GeV 0.245) ° future |
upgrade, will offer a new level of sensitivity and
measure the parity-violating asymmetry in the i Moller [SLAC]{ &
scattering of longitudinally polarized electrons off = IAPV(CS) {\.-,),S &
unpolarized target to a precision of 0.73 ppb. = £

i Moller [JLab] x S ;-

That would allow a determination of the weak Qweak [JLab] T ’%,,,}) A q(had) [SLC] -
mixing angle with an uncertainty of about 0.1%, a 0.230| PV-DIS [JLab] T Y NEA(b) [LEP]

factor of five improvement in fractional precision
over the measurement by E-158.

0225 toiuul 11
2 0.001

B sy

u [GeV]

J. Benesch et al., MOLLER Proposal to PAC34, 2008



One-Loop Corrections for MOLLER

7t 7,Z(W) 7,2(W)
z 7z e v
Y,
Y.L

(1) (2) (3) (4) (5)

70 70
0= 5 [My+ Mif* = (MM +2ReM; M+ My M) = 09 + 01 + 00
X ()42 < X CVS ) X ()44
o1 = 0_1BSE + O_YG’P _I_O_lBox

*Calculated in the on-shell renormalization, using both:
« Computer-based approach, with Feynarts, FormCalc, LoopTools and Form
T. Hahn, Comput. Phys. Commun. 140 418 (2001);
T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999);
J. Vermaseren, (2000) [arXiv:math-ph/0010025]

* “By hand”, with approximations in small energy region g;u} < 1, for Vs < 30 GeV and
high energy approximation for v/s > 500 GeV Z,W



One-Loop Corrections for MOLLER

—————
------
_______

C _ AO©
@ 54 = ALR ALR
- ; - 0
02 N (_Wek Correction ) ALR

| | S | | The relative weak (solid line in DRC
04 T e D (semi-automated) and dotted line in

o | | | S HRC ("by hand")) and QED (dashed
line) corrections to the Born

0.6 """"" asymmetry A° g versus Vs atf =
B | | | | & 900
S0.8 b | 1 Thefilled circle corresponds to our
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Two=-Loop Corrections for MOLLER

The Next-to-Next-to-Leading Order (NNLO) EWC to the Born (-~ MyM,*) cross section can be divided
into two classes:

* Q-part induced by quadratic one-loop amplitudes ~ M;M,*, and
* T-part — the interference of Born and two-loop diagrams ~ 2ReM;Mz-i00p™ .

3 7.‘.3

4 )
o= g—S\MO + M = - (MoMy +2ReMy My 4| MM )| = 09 + o +

Ve b

X ¥ X & X




Combination of Corrections

For the orthogonal kinematics: 0 = 90°

TyPe O].c 0, Published
contrlbutlon Correction to PV asymmetry:
NLO -0.6953 PRD’10,YaF’ 12
+Q+ BBSE 5% ALn = ALr
_ ’ ’ 0
Vert VorRsE | 06420 PRD'I2,YaF'I3 AD
...+ double boxes  -0.6534 EPJ’ 12

Soft-photon bremsstrahlung cut:

w = 0.05+/s

..*NNLO QED  -0.6500

...+SE and Ver in
boxes

...*NNLO EW Ver under way

-0.6504 YaF' 15

¢

.... means all contributions from the lines above



Asymmetry [ppm]

PV Asymmetry

0 [deg]

Predicted PV asymmetry up to
NNLO:

Apy(9 = 94,96 (ppb)

Apy(LO+NLO+NNLO) . 33 2 (ppb)

Although suppression of Born
asymmetry due to loops
correction is quite large, overall
uncertainty of theoretical
results is below 1 %.



BSM Physics with Dark Vector

Consider a U(l)’ gauge symmetry which may interact with hidden sector particles:

Standard

Model

The gauge boson kinetic term (QED example):

L@ED _ _iAWAW (with A, = 9,4, — 0,A,)

kin

The A’ couples to SM particles through kinetic mixing of U(l)y & U(1)" [Holdom (1986)]:

1 € In general case A’ represents dark

1 1 ; .
Ly, = __BMVBFW + — BMVA’“V — _A;LVAIIUJV photon. (pal.’lty-sons.ervmg) or |
4 2 cos Oy 4 Z’ (parity-violating) interaction carrier.

B, = cosOw A, —sinbwZ,

Expected size of kinetic mixing from loops of heavy fermions: € ~ (gv ga')/(16TT%) < 10-3



BSM Physics with Dark Vector

* Parity-conserving, dark vector boson (kinetic) mixing with photon produces:
Dark Photon

— e —
Lint = —eQefyuf - (A" + eA™) = —m o flefyu + hrprs) f - 2"

* Parity violating, dark vector boson (mass) mixing with photon and Z boson produces:
Dark Z’ Boson

H. Davoudiasl, et. al., arXiv:1203.2947v2, Phys. Rev. D 85, 115019 (2012)

_ e _
Lint = —eQefy,f - (A* + EA/M) _ g a— HWf(c“f/%L + Cfiﬂu%)f (ZM + GZ/A’M)

mz: : :
2" where & =3- 105 is an arbitrary model-dependent parameter

€z — 5
mz



Dark-Vector in Moller Scattering

Calculation Strategy

® Complete the calculations of PV
MOLLER asymmetries including one-

loop (NLO) for the SM particles. This
will define SM central value.

® Proceed with calculations of PV
asymmetries with hew physics
particles including one-loop and
construct exclusion plots for 1%
deviations from the SM central values.

New-Physics particles (Dark
Photon or Z’) in the loops

e -
(@p)
“§
=
U
e .
(1)
SM. NP
e % e
wn
‘Z
=
)
e
(3)
e
SM. NP SM. NP

SM, NP SM, NP

SM, NP SM,NP ¢
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Dark-Vector in Moller Scattering

Exclusion plot for MOLLER using Z’ as a candidate for BSM physics Relative correction to € mixing parameter due to loops
N I I I B I I I B I 0.0
10 SN lN l
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Conclusions

* (g-2)u discrepancy could be explained by light dark photon. It is complementary to
LHC program and so far is the strongest signal of BSM physics.

* nEDM measurements completed or planned (TRIUMF) will greatly improve our
understanding of SUSY as a possible theory for BSM physics.

* Two electroweak PV experiments: Qweak (completed) and MOLLER (planned) are
complimentary to LHC search for BSM physics.

* With relatively large uncertainty arising from Y-Z boxes, Qweak results (4% of data)
are in agreement with SM predictions for weak charge of proton and neutron .

* MOLLER experiment is highly needed to put new constrains on weak charge of the
electron.

* Dark Vector BSM physics scenarios for Moller process have best sensitivity for Z'.

* The Z’ search in MOLLER is complimentary to (g-2),, where deviation with SM
predictions reach 3.60



