True Random Number Generation based on Interference between Two Independent Lasers

Caleb John, Raju Valivarthi, Qiang Zhou and Wolfgang Tittel

QC2 Lab, Institute for Quantum Science and Technology Department of Physics and Astronomy, University of Calgary, Canada June 16, 2015

Outline

- Motivation
- Principle & implementation
- Analysis & testing
- Conclusions and outlook

Why True Random Numbers?

- True vs. Pseudo-Random Number Generator
- Online Casinos
- Statistical Simulations
- Cryptography
- Quantum Cryptography (Quantum Key Distribution, etc.)

Other QRNG Schemes

- Commercial QRNG by ID Quantique (~4 MHz) ID Quantique - Random Number Generation using single photons <u>http://www.idquantique.com/</u>
 - Generation Rate is limited by speed of single photon detectors
- QRNG based on randomness of laser emission (up to Ultra-fast quantum randomness generation by accelerated phase diffu-*M. Jofre, et al. Optics express* 22.2 (2014): 1645-1654.
 True random numbers from amplified quantum vacuum *C. Abellan, et al.* Optics Express, vol. 19, issue 21, pp. 20665-20672 (2011).

4

Our Scheme

[1] C. H. Henry, Quantum Electronics, IEEE Journal of 18, 259-264 (1982).

Implementation

Lasers with drivers and temperature controller

50:50 beam splitter

Balanced photodetector

Confirm the randomness of output

Persistence mode oscilloscope trace of 1 pulse

 $\Delta i(t) \propto 4E_1(t)E_2(t) \times \sin(\Delta \varphi(t)).$

Histograms of the output

Probability density function of output $1/(\pi \times \sqrt{1-x^2})$ *Assuming phase is uniformly distributed from 0-

How to get the random bits?

1 bit digitization and extraction

How to test the randomness?

• A quick look at the randomness of numbers

Visualization of our bits

Battery of NIST tests-15 tests for statistical properties of a RNG [1]

[1] A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22 revision 1a (2010).

Results of the NIST test

*All test were performed with 100 trials, with 1Mbit per trial

	FR.	FB.	RN.	LR.	BR.	FT.	NO.	OT.	US.	LC.	ST.	AE.	CS.	RE.	RV.
Raw bits (1 pulse)	\checkmark	\checkmark	\checkmark	X	\checkmark	Х	Х	Х	Х	\checkmark	Х	Х	\checkmark	Х	Х
Raw bits (2 pulses)	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark							
Extracted bits	\checkmark														

-R - Frequency	BR - Binary Matrix Rank	US - Universal Statistical	CS - Cumulative Sums
-B - Block Frequency	FT - Discrete Fourier Transform	LC - Linear Complexity	RE - Random Excursions
RN - Runs	NO - Non-Overlapping Templates	ST - Serial Test	RV - Random Excursions Varian
_R - Longest Run of Ones	OT - Overlapping Template	AE - Approximate Entropy	

Conclusion & Outlook

- Proposed and demonstrated a QRNG Rates up to 250 MHz
- All commercial components

Future Work

- Binning to increase the generation rates ~3 GHz
- Implementing the prototype of a Quantum Random Number Generator

Extended NIST Results

Extra Figures

