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Context – Physics

I Introductory physics – Motion
I Parabolic motion
I Energy transformations, losses
I Air resistance, other sources of errors

I Intermediate/advanced physics – Impact
I Mechanics of impact
I Impulse forces, deformation, etc.
I No simple model available!



Context – Sports rules

I NBA – “The ball shall be an officially
approved NBA ball between 71

2 and 81
2

pounds pressure [51.7 to 58.6 kPa].”

I FIBA – “[The ball shall] be inflated to an
air pressure such that, when it is dropped
onto the playing floor from a height of
approximately 1,800 mm measured from
the bottom of the ball, it will rebound to
a height of between 1,200 mm and
1,400 mm, measured to the top of the
ball.”
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Definition

The coefficient of restitution e of a ball impacting against an
immovable body is

e =

∣∣∣∣vfvi
∣∣∣∣ (1)

For balls, e ranges between 0 [no bounce] and 1 [perfectly bouncy].



The Question

Q: How does internal pressure
affect the bouncing of a ball?
Q: What is e (P )?
A: No model exists!

I Polynomial?

I Exponantial?

I Something else?



Our Answer

I Pressure forces

I Wall forces

I Dissipative forces

I Final model



Pressure Forces 1

Geometry

A = π
[
R2 − (R− x)2

]
(2)

V =
4

3
πR3 − 1

3
πx2 (3R− x) (3)

Pressure force

FP = (P − P0)A (4)

Isothermal compression

PV = PiVi (5)



Pressure Forces 2

Combining (2)–(5) together yields

FP =

[
4R3

4R3 − x2 (3R− x)
Pi − P0

]
πx (2R− x) (6)

Taylor expansion in terms of the gauge pressure PG = Pi − P0

FP = 2πRPGx
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)
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+ ...

]
(7)

If x� R and PG � 0

FP ≈ 2πRPGx (8)

FP is linear in x, with a force constant of

kP = 2πRPG (9)



Wall Forces 1

Wall forces (shear forces)

FW = ApGθ (10)

Cross-sectional area of perimeter

Ap = 2πDW

√
R2 − (R− x)2 (11)

Angle of contact

θ = arccos

(
R− x
R

)
(12)



Wall Forces 2

Combining (10)–(12) yield

FW = 2πGDW

√
R2 − (R− x)2 arccos

(
R− x
R

)
(13)

Taylor expansion

FW = 2πGDWx

[
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)
− 1

15
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R

)2
+ ...

]
(14)

If x� R

FW ≈ 4πGDWx (15)

FW is linear in x, with a force constant of

kW = 4πGDW (16)



Total Restoring Force

According to our model, the combined restoring effect of wall
strength and pressure is

FR = FP + FW (17)

≈ (2πRPG + 4πGDW)x

and the ball will effectively have a spring constant of

k = 2πRPG + 4πGDW (18)



Dissipative Forces 1

Let us consider a ball of spring-like restoring force FR, with spring
constant k, subject to a uniform dissipative force FD.

In compression (A → B)

Ki =
1

2
kx20 −mgx0 + FDx0

(19)

In decompression (B → C)

Kf = e2Ki =
1

2
kx20 −mgx0 − FDx0

(20)



Dissipative Forces 2

Combining (20) and (21), we obtain(
1 + e2

)
(1− e2)2

=
kKi

4F 2
D

− mgKi

2F 2
Dx

2
0

(21)

If 1
2kx

2
0 � mgx0, we can ignore the last term, and(

1 + e2
)

(1− e2)2
≈ kKi

4F 2
D

(22)



Final Model

Incorporating (19) into (23), we obtain(
1 + e2

)
(1− e2)2

=
(2πRPG + 4πGDW)Ki

4F 2
D

(23)

Or (
1 + e2

)
(1− e2)2

= APG +B (24)

where

A =
πRKi

2F 2
D

(25) B =
πGDWKi

F 2
D

(26)
B

A
=

2GDW

R
(27)



Reality check – Basketballl

Height A B G FD

(m) (10−4 Pa−1) (105 Pa) (N)

• 0.75 2.576± 0.052 1.35± 0.28 1.01± 0.27 55.92± 0.92
◦ 1.50 1.916± 0.036 1.29± 0.20 1.29± 0.27 91.7 ± 1.5



Reality check – Soccerball

Height A B G FD

(m) (10−4 Pa−1) (105 Pa) (N)

• 0.75 2.76 ± 0.11 6.60± 0.65 2.90± 0.49 43.8 ± 1.2
◦ 1.50 2.277± 0.088 3.24± 0.46 2.52± 0.44 55.7 ± 1.4



Reality check – Volleyball

Height A B G FD

(m) (10−4 Pa−1) (105 Pa) (N)

• 0.75 3.14 ± 0.14 3.50± 0.80 1.18± 0.39 32.16± 0.93
◦ 1.50 2.091± 0.074 4.74± 0.50 1.62± 0.39 68.1 ± 1.8



Fit vs Data

If PG > 25 kPa, spread <2.5%, individual points <1.5%!



Conclusions 1

I Model is very accurate at PG > 25 kPa.

I FD increases by a factor of 1.3 to 2.1 when height is doubled.

I G is constant within error when height is doubled.
I G has correct order of magnitude.

I Gexp ≈ 105 Pa vs Grubber = 3× 105 Pa.



Conclusions 2

I Could include higher-order correction terms in the analysis if
greater accuracy is desired at PG < 25 kPa.

I Ultimately, could go back to the specific forms of A (x),
V (x), Ap (x) and θ (x) for more accurate FP (x) and FW (x).

I Non-uniform dissipative forces?

I Non-isothermal compressions?
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Experimental Method 1

Several methods exist to probe e

e =

∣∣∣∣vfvi
∣∣∣∣ (28)

vf and vi are related to several other quantities, like the height of
bounces, times of flight, etc. In terms of typical accuracy

Time methods > Height methods > Velocity methods



Experimental Method 2

Since e depend on Ki, we need to control for Ki. Easiest way is to
control for Hi, and study first impact.

Assuming no air resistance

vi =
√

2gH (29)

vf =
1

2
gtf (30)

Therefore

e =

√
gtf
8H

(31)



Experimental Method 3

I Manual release (± < 1 cm) at 0.75 m and 1.50 m

I Sound-based time-of-flight measurement (± < 1 ms)

I Inflated with bike pump, but accurate sensor (± < 0.5 kPa)

I At least 5 trials per pressure, per ball, per height

Ball & Model R (cm) m (g) DW (mm)

(Bask.) Wilson WTB0935 11.75± 0.15 592.9± 0.1 3.10± 0.09
(Socc.) Nike SC2400-471 10.80± 0.15 422.2± 0.1 4.51± 0.08
(Voll.) Wilson WTH3501 10.35± 0.15 271.2± 0.1 5.02± 0.28


