Ultracold Neutrons and Neutron EDM

J. Martin

The University of Winnipeg

T. Adachi¹, E. Altiere², T. Andalib^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, M. Chin⁵, C. Davis⁵, F. Doresty⁴, M. Gericke⁴, S. Hansen-Romu^{3,4}, K. Hatanaka⁶, B. Jamieson³, S. Jeong¹, D. Jones², K. Katsika⁵, S. Kawasaki¹, T Kikawa^{5,6,1}, A. Konaka^{5,8}, E. Korkmaz⁷, M. Lang³, T. Lindner⁵, L. Lee^{4,5}, K. Madison², J. Mammei⁴, R. Mammei³, J.W. Martin³, Y. Masuda¹, R. Matsumiya⁶, K. Matsuta⁸, M. Mihara⁸, E. Miller², T. Momose², S. Page⁴, R. Picker⁵, E. Pierre^{6,5}, W.D. Ramsay⁵, L. Rebenitsch^{3,4}, J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers^{4,5}, Y. Watanabe¹, and J. Weinands²

¹KEK, Tsukuba, Ibaraki, Japan
 ²The University of British Columbia, Vancouver, BC, Canada
 ³The University of Winnipeg, Winnipeg, MB, Canada
 ⁴The University of Manitoba, Winnipeg, MB, Canada
 ⁵TRIUMF, Vancouver, BC, Canada
 ⁶RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
 ⁷The University of Northern BC, Prince George, BC, Canada
 ⁸Osaka University, Osaka, Japan
 ⁹Simon Fraser University, Burnaby, BC, Canada

Ultracold Neutrons (UCN)

• Neutrons that are moving so slowly that they bounce off surfaces and can be bottled.

$$-v < 8 \text{ m/s} = 30 \text{ km/h}$$

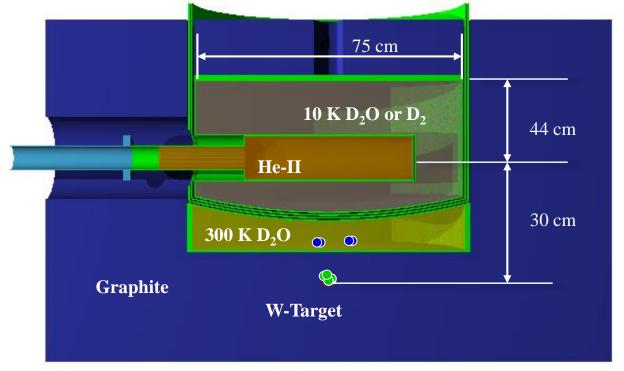
- -T < 4 mK
- K.E. < 300 neV

• Interactions:

- Gravity: V = mgh mg = 100 neV/m

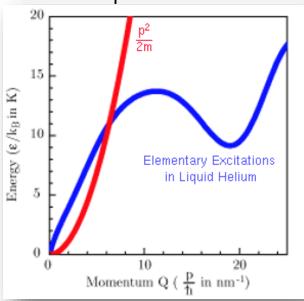
Monday - Friday

- Magnetic: $V = -\mu \cdot B$ $\mu = 60 \text{ neV/T}$
- Strong: $V = V_{\text{eff}}$ $V_{\text{eff}} < 335 \text{ neV}$
- Weak: $\tau = 886 \text{ s} = 15 \text{ mins}.$


What are the best experiments for UCN?

- Those best using their long storage/spin coherence time:
 - Neutron EDM (strong CP problem, SUSY CP problem, electroweak baryogenesis)
 - Neutron lifetime (BBN, V_{ud}/CKM unitarity)
 - Angular correlations, precision spectroscopy in beta decay (V_{ud}/CKM, scalar/tensor currents)
 - n-nbar oscillations? Quantum computing/error studies?
- Those best using their low energy
 - Neutron gravity levels above a mirror (gravity at μm scales, chameleon fields, fifth force, ...)
 - Surface science of big organic molecules?
- Generally accepted that nEDM is top science priority for this field, given present UCN fluxes; it is our flagship experiment.
- Breakthrough in UCN production would improve precision of experiments, and open up new possibilities (free n target?)

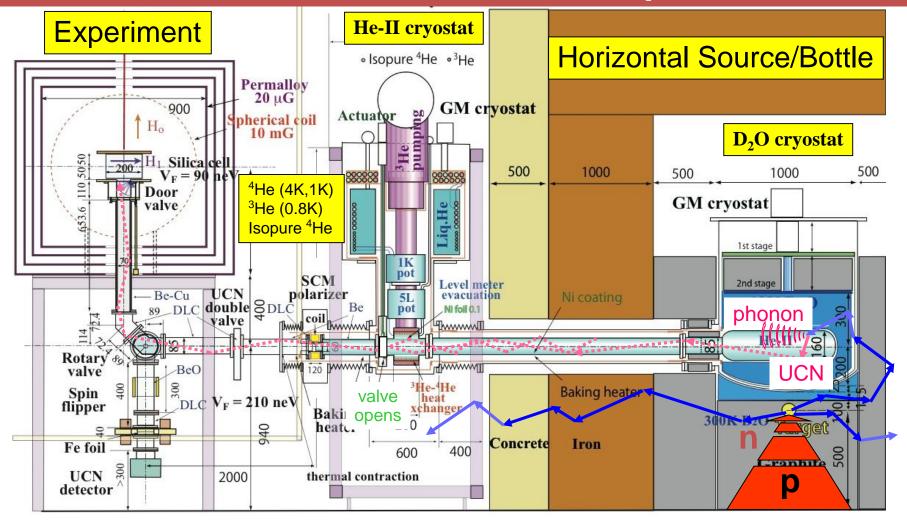
Spallation-driven Superfluid He-II UCN Source


UCN production recipe:

- *Spallation* Liberate neutrons from W target
- *Moderation* Thermalize, cool neutrons in D₂0 ice
- Conversion Convert cold neutrons to UCN in He-II.

General Layout of UCN Source at RCNP Osaka

Cold neutron energy transferred to He-II via phonon emission


- Thermal, Cold & Ultra-Cold neutrons
- MeV neutrons

Moderators

Thermal: Graphite, 300K D₂O

Cold: 10K D₂O ice

Connection to Phase I nEDM experiment

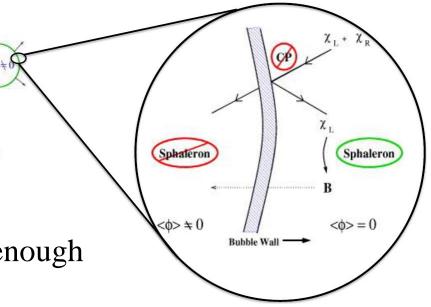
2012-2014: Develop/Test Source (& nEDM) at RCNP [1+ μA]

2015: Source moves to TRIUMF

2016: Commission Source at TRIUMF [ramp to 40μA]

Sakharov's Criteria and EW Baryogenesis Solutions

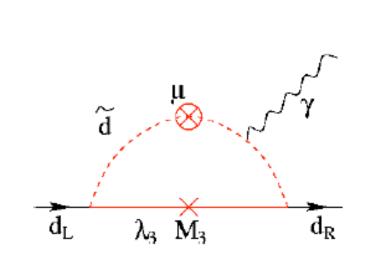
Criteria

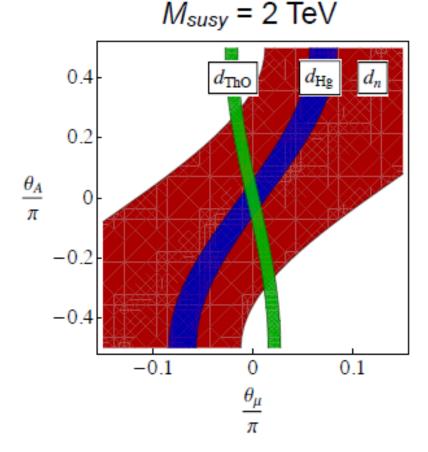

Departure from thermal equilibrium

- B-violation
- CP-violation

EW Baryogenesis Problems:

- EW phase transition not strong enough
- Not enough CP violation


EW Baryogenesis


D.E. Morrissey and M.J. Ramsey-Musolf, New J. Phys. 14, 125003 (2012).

Requires new physics and CP-violation near the EW scale

Sensitivity to new sources of CP violation

Induces:
$$d_q \sim \frac{\alpha}{\pi} \times \frac{m_q}{\Lambda_{SUSY}^2} \times \sin \theta_{CP}$$

e.g. SUSY CP problem and relationship to LHC

M. Pospelov and A. Ritz, A. Ritz, CIPANP 2015.

Sensitivity to SM sources of CP violation

- Strong sector may violate CP via θ term.
- Naively $\theta \sim 1$.
- Experimentally $\theta < 10^{-11}$, constrained mainly by nEDM.

Strong CP problem

Solution: Peccei-Quinn symmetry, axions(?)

• CKM CP violation is 10⁻³¹ e-cm background

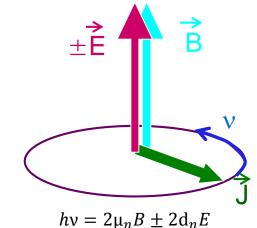
Electric dipole moments and CP violation

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

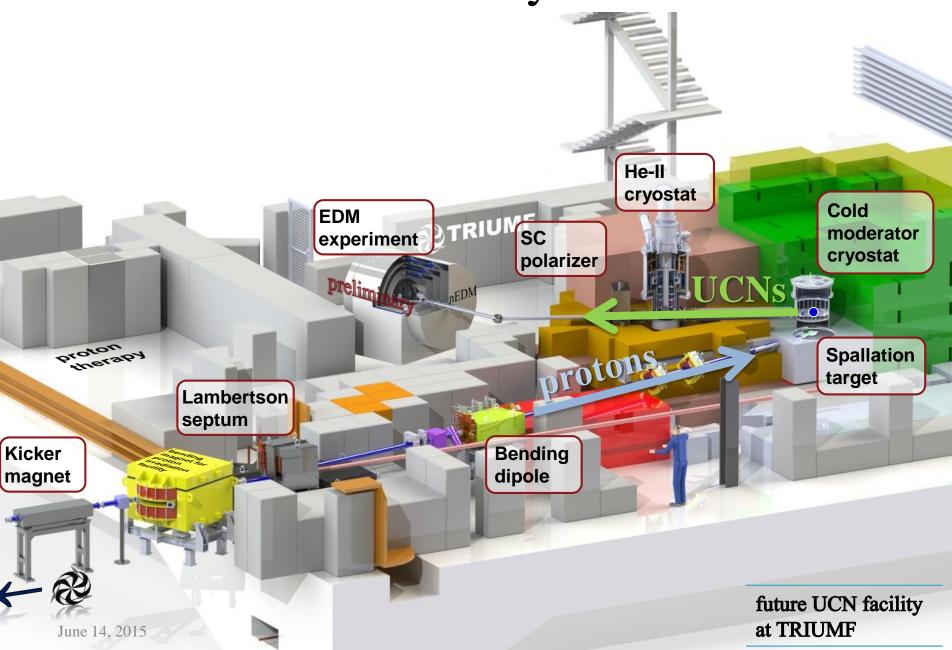
- The EDM (d) term violates CP.
- New sources of CP violation required in e.g. electroweak baryogenesis.

$$h\nu = 2\mu B \pm 2dE$$

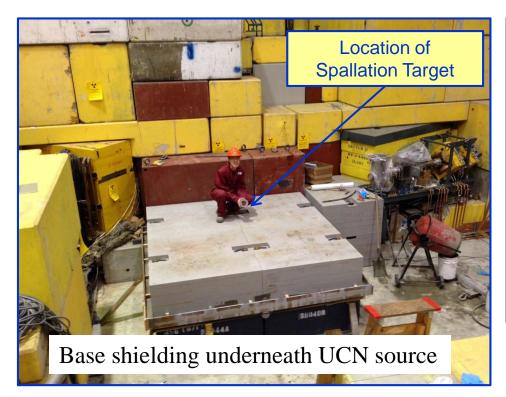
• Precision goal $\delta d_{\rm stat} = 1.4 \times 10^{-25}$ e-cm/cycle, 10^{-27} e-cm ultimately.

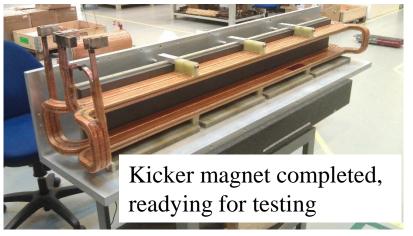

TRIUMF Neutron EDM Experiment

• Overview/Goals:


- Our approach: Spallationdriven superfluid-helium UCN source connected to roomtemperature nEDM experiment.
- Present world's best limit (Sussex/RAL/ILL) $d_n < 3 \times 10^{-26} \text{ e-cm}$
- SM (CKM) lower bound $d_n > \sim 10^{-31} \text{ e-cm}$
- Our goal sensitivity: $\delta d_n \sim 10^{-27}$ e-cm ("phase 2") $\delta d_n \sim 10^{-28}$ e-cm (possible with source upgrades)

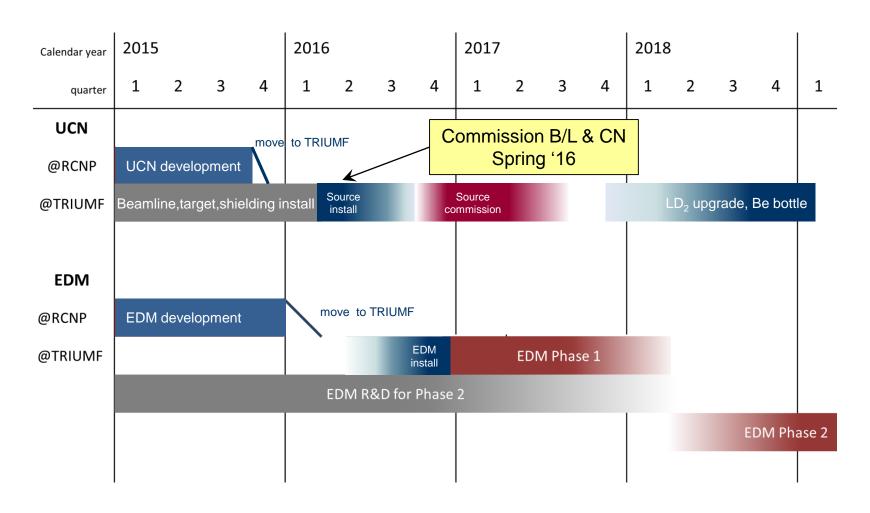
• Features of nEDM expt.:


- New UCN source with potential world-leading density
- Room temperature with flexibility e.g. to modify cell size in light of systematics vs. stats.
- New dual ¹²⁹Xe 2-photon + ¹⁹⁹Hg comagnetometers
- Improved magnetic field control, diagnostics.

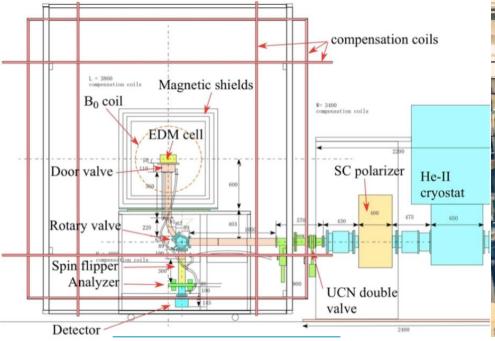


TRIUMF Facility Overview

2015 Highlights and 2016 plans



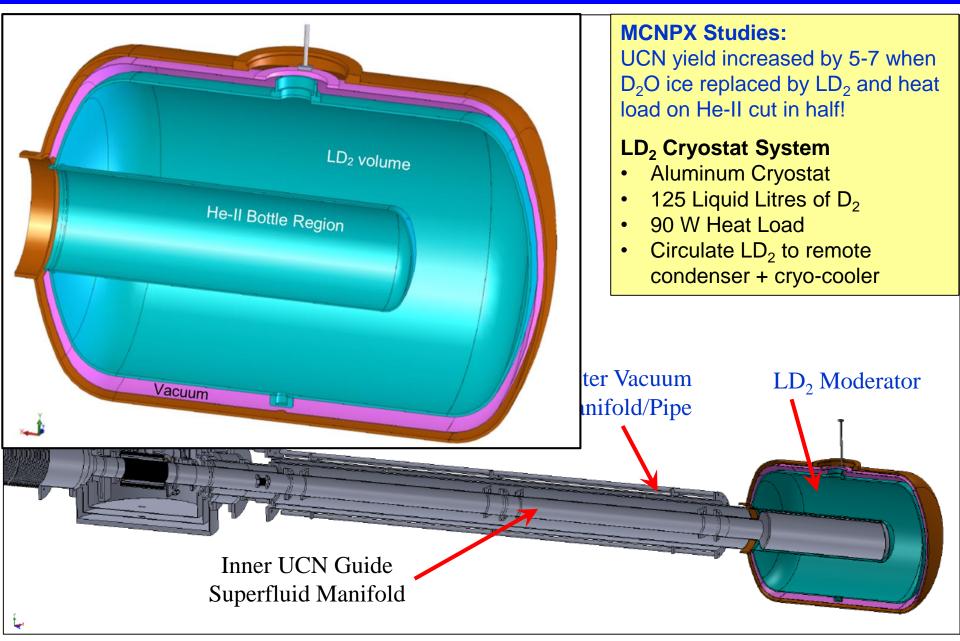
- Design/safety review June 2015
- Target design review July 2015
- UCN source shipment Oct. 2015
- More reviews
- Begin installation of final components January 2016.
- First UCN fall 2016.


Roadmap Towards nEDM

nEDM experiment first priority (after UCN source commissioning)

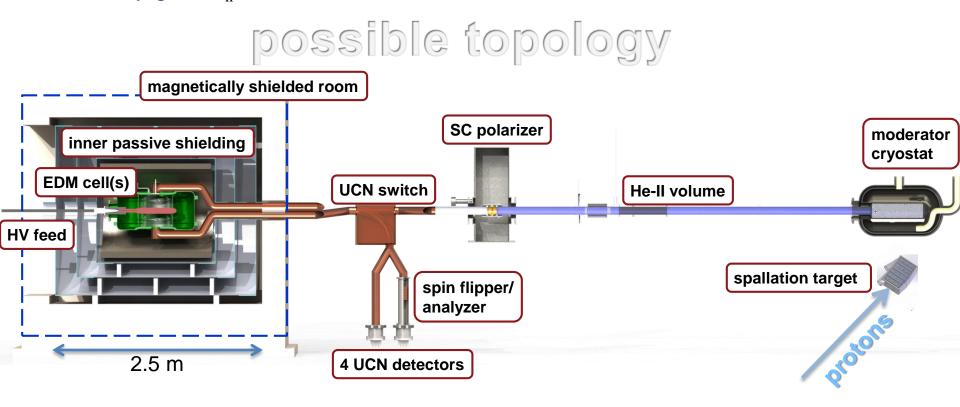
nEDM Phase 1

- use existing EDM Ramsey apparatus from RCNP, Osaka
- exploit higher UCN density at TRIUMF (also more beamtime available)
- room temperature, 1 small cell, vertical loading, spherical B₀ coil
- small incremental improvements until replaced by Phase 2
 - Active magnetic compensation system
 - high voltage
 - comagnetometer
 - high-flux detector



EDM Phase 1 schematic

EDM Phase 1 at RCNP


Phase 2: Cold Moderator Upgrade to LD₂

nEDM Phase 2 - circa 2019?

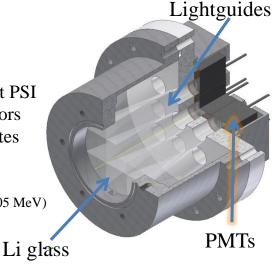
- room temperature
- improvements
 - higher UCN density with LD₂ moderator
 - · 2 cells, probably "horizontal" loading
 - dual Xe/Hg comagnetometer
 - improved magnetic environment
 - simultaneous counting of both polarizations
- Sensitivity goal: $d_{\rm n} < 10^{-27}\,{\rm e\cdot cm}$

- ongoing extensive R&D program
 - · Magnetic fields
 - UCN detector
 - comagnetometer
 - HV/EDM cell
 - simulations

Canadian EDM R&D

Magnetic environment

- active shielding
- passive shielding
- creation of stable, homogeneous B fields
- Precision atomic magnetometry and **SQUIDs**



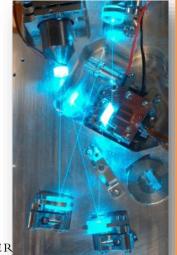
Cylindrical shells of the 4 layer FM shield

UCN detection

- Need faster detectors
- Li glass scintillators + lightguide + PMTs
- Test run in August 2015 at PSI
- R&D towards dual detectors which count both spin states simultaneously.

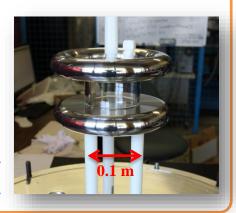
 $n+^6Li \rightarrow ^3H (2.74 \text{ MeV}) + ^4He (2.05 \text{ MeV})$

UCN detection



Dual Co-magnetometer

- Hg, Xe polarisation
- laser development
- 2-photon transition of intense CW UV lasers.



Electric field, UCN cell

- dielectric strength of Xe at 10⁻³ mbar unknown
- 50x100 mm cylindrical test cell
- gas breakdown studies
- material studies

HV test cell

Long-Range Plan

- <u>2017-2021</u>: improvements to UCN source and nEDM experiment
 - 2017-2018 CFI proposal for major upgrade to UCN source (\$2M) and nEDM experiment (\$10M), (\$12M, incl. partners) leveraged by Japan support and TRIUMF 5YP support (\$1.6M)
 - NSERC support ~\$800k/yr (presently ~\$500k/yr)
- <u>2022-2026</u>: development of facility and other UCN experiments
 - Neutron lifetime in a magnetic trap
 - Neutron gravity levels
 - Cost scale ~\$5M/expt. Expect new international users and support for these experiments.

HQP

- Present Canadian HQP:
 - Eight graduate students (4 MSc + 4 PhD)
 - Seven postdocs-RA's (~three supported by JSPS)
 - 8-10 undergraduates
- Involved in all aspects: nEDM R&D, UCN production/transport.
- Ideal situation for 2017-2021:
 - Ten grad students, shifting more to PhD level
 - Five postdocs (NSERC support)
 - 8-10 undergraduates.

Other items we are asked to address

• Computing:

- Presently, modest Westgrid usage for MC.
- Expect this to double. Analysis needs at same scale.
- Support from TRIUMF:
 - \$1.6M in this 5YP (2015-2019)
 - Continued engineering, technical support

Other items we are asked to address

- Relationships to other Canadian programs:
 - Theme of low-energy precision measurements. "Precision frontier" or "Intensity frontier".
 - Theme of interdisciplinary condensed matteratomic-nuclear-particle groups (similar to e.g. TRINAT, Fr-APV, ALPHA, ...)
 - Theme of other EDM's: Rn-EDM, Fr-EDM ideas at TRIUMF.
 - Personnel: Many collaborators share their time with T2K, Moller, and atomic physics projects.

International Relationships

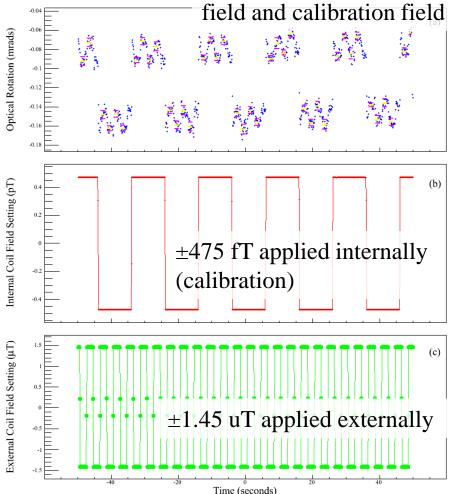
- Relationships with international partners:
 - Canada-Japan collaboration, led by Y. Masuda (KEK) and J. Martin (Winnipeg)
 - New users for TRIUMF UCN facility expected as nEDM ramps down and new projects (lifetime, gravity, ...) ramp up (2022 and beyond)
- International competitors: alternate UCN source technologies pursued in France, US, Switzerland, Germany, Russia. This is a very active field.
- UCN source performance is key factor. Presently the leaders (ILL, LANL, and PSI) all have similar performance; upgrades proposed to go to next level.
- Our UCN source technology (spallation, superfluid helium) is unique. Regarded in UCN community as potential world-leader for the future.

Summary

- UCN source testing (RCNP) and installation of beamline components (TRIUMF) proceeding on schedule.
- R&D progress for the neutron EDM experiment.
- Phase I nEDM operating by 2016-17
- Phase II application aiming at sub-10⁻²⁷ e-cm precision planned for 2017-18.

Even more info and backups

Recent achievements


- Recent publications on magnetic field R&D and UCN detector (4 publications in last two years)
- Two recent MSc theses (Eight MSc/PhD in progress)
- Conference proceedings/presentations (most recent one is Larry Lee at SSP2015, Victoria, BC, several others this week at CAP)
- Facility, installation at TRIUMF (see this talk and Larry's talk at SSP)

Example nEDM R&D achievement: Precision atomic magnetometry with Rb Optical rotation sees shielded

- Wolfgang Klassen (UM/UW) installing external coils.
 Magnetometer at 20 fT precision!

 (Your brain thinking ~ 1000 fT)

 Shielding factor = 1.3×10^7 couldn't have been measured with any other have been measured with any other magnetometer.

"Large magnetic shielding factor measured by nonlinear magneto-optical rotation," J.W. Martin, R.R. Mammei, W. Klassen, C. Cerasani, T. Andalib, C.P. Bidinosti, M. Lang, and D. Ostapchuk, Nucl. Instr. Meth. A 778, 61-66 (2015).

NSERC Faculty Research FTE's

Name	Institution	FTE
C. Bidinosti	U. Winnipeg	0.4
J. Birchall	U. Manitoba	0.3
M. Gericke	U. Manitoba	0.1
B. Jamieson	U. Winnipeg	0.5
D. Jones	UBC	0.3
A. Konaka	TRIUMF	0.2
E. Korkmaz	UNBC	0.3
T. Lindner	TRIUMF/U. Winnipeg	0.1
K. Madison	UBC	0.3
J. Mammei	U. Manitoba	0.1
R. Mammei	U. Winnipeg	0.9
J. Martin	U. Winnipeg	0.8
T. Momose	UBC	0.3
W. van Oers	U. Manitoba/TRIUMF	0.3
S. Page	U. Manitoba	0.1
R. Picker	TRIUMF	1.0
J. Sonier	SFU	0.1
Joint Position TRIUMF/U. Winnipeg		0.9
<u>Total</u>		7.0

- This is list expected for our next renewal April 2015
- Also ~4 Japan faculty FTE's
- Expect 1-2 more Canadians to join over next 5YP period, and some Japanese
- More international users once facility is operational and time can be dedicated to other experiments (2022-)

Full Collaboration List (06/2015)

```
T. Adachi<sup>1</sup>, E. Altiere<sup>2</sup>, T. Andalib<sup>3,4</sup>, C. Bidinosti<sup>3,8</sup>, J. Birchall<sup>4</sup>, M. Chin<sup>5</sup>, C. Davis<sup>5</sup>, F. Doresty<sup>4</sup>, M. Gericke<sup>4</sup>, S. Hansen-Romu<sup>3,4</sup>, K. Hatanaka<sup>6</sup>, B. Jamieson<sup>3</sup>, S. Jeong<sup>1</sup>, D. Jones<sup>2</sup>, K. Katsika<sup>5</sup>, S. Kawasaki<sup>1</sup>, T Kikawa<sup>5,6,1</sup>, A. Konaka<sup>5,8</sup>, E. Korkmaz<sup>7</sup>, M. Lang<sup>3</sup>, T. Lindner<sup>5</sup>, L. Lee<sup>4,5</sup>, K. Madison<sup>2</sup>, J. Mammei<sup>4</sup>, R. Mammei<sup>3</sup>, J.W. Martin<sup>3</sup>, Y. Masuda<sup>1</sup>, R. Matsumiya<sup>6</sup>, K. Matsuta<sup>8</sup>, M. Mihara<sup>8</sup>, E. Miller<sup>2</sup>, T. Momose<sup>2</sup>, S. Page<sup>4</sup>, R. Picker<sup>5</sup>, E. Pierre<sup>6,5</sup>, W.D. Ramsay<sup>5</sup>, L. Rebenitsch<sup>3,4</sup>, J. Sonier<sup>9</sup>, I. Tanihata<sup>6</sup>, W.T.H. van Oers<sup>4,5</sup>, Y. Watanabe<sup>1</sup>, and J. Weinands<sup>2</sup>
```

¹KEK, Tsukuba, Ibaraki, Japan
 ²The University of British Columbia, Vancouver, BC, Canada
 ³The University of Winnipeg, Winnipeg, MB, Canada
 ⁴The University of Manitoba, Winnipeg, MB, Canada
 ⁵TRIUMF, Vancouver, BC, Canada
 ⁶RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
 ⁷The University of Northern BC, Prince George, BC, Canada
 ⁸Osaka University, Osaka, Japan
 ⁹Simon Fraser University, Burnaby, BC, Canada

Grad students highlighted in red

Typically 8-10 undergraduates per year (not listed)

More collaborators always welcome:

- nEDM R&D, future UCN source R&D, future experiments R&D