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Dyson-Schwinger equations

Consider a Dyson-Schwinger equation like

x k-q
Ly=1- % [ d% — .
G0 =1= 5 | o g gr

where L = log(q®/u?).

This is a little piece of Yukawa theory. (See Broadhurst and Kreimer
arXiv:hep-th /0012146, but blame me for the funny mathematician’s nor-
malization.)
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Today’s level of generality

We can deal with more than just this example. For today we need

e single scale, i.e. only propagator insertions into propagator func-
tions

e only one insertion place (can fix this, see arXiv:0810.2249)
But we can have
e any number of primitive diagrams

e a wide variety of theories
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Diagrammatics

Consider Dyson-Schwinger equations diagramatically.
Eg:
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B, for graphs
A Feynman graph is primitive if it has no subdivergences. Write B for

insertion into the primitive Feynman graph ~.
Eg:

By weighting the insertions by an appropriate combinatorial coeflicient

we can avoid double counting overlapping subdivergences.
Eg:

The coefficient for avoiding double counting is hairy
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Combinatorial Dyson-Schwinger equations

Using By we can rewrite the diagrammatic Dyson-Schwinger equations

as follows
Eg:

The coupling has become a counting variable.
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Rooted trees

Let’s get some experience with the simpler example of rooted trees in-
stead of Feynman graphs. This is the same as the situation with no
overlapping subdivergences by thinking of a Feynman graph as the tree
of its subdivergences.

Let B.(F') be the tree constructed by adding a new root above each tree
from the forest F.
Eg:
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Expanding tree equations — 1

Eg:
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Expanding tree equations — 11

1
T=1-2B. (T)

Eg:

This is a kind of combinatorial specification language using only sums,
products, and sequences.
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Trees, leading logs, and tree factorial

Staying with trees for the moment, the Feynman rules would give a map
from trees to some target algebra. For just the leading log part we would

have
t— CtL|t|

A nice such map comes from the tree factorial. For a vertex v of ¢, let
t, be the subtree rooted at v. Then

$ =

Eg:

The tree factorial Feynman rules are

LIt
e pp—
t!
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Hook weight formulas

The combinatorics community has studied this in a different language
(see Jomnes, Y., arXiv:1412.6053 regarding unifying the communities).
Given a series Bi, By, ... define the hook weight of a tree

— H B,
vet
Then for a class T of trees we can form the weighted generating function
Fpr(x Z wp(t)z!!
teT

The question is, what choices of tree class and hook weights give nice
weighted series Fp 7+ where nice either means a closed formula or a
combinatorial interpretation.

In our language this is, what choices of combinatorial Dyson-Schwinger
equation and (leading log) Feynman rules give nice Green function.
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Example - 1

(Postnikov’s formula)
Combinatorial DSE:

Hook weight:

Green function:

—W(—2xL)
2x L

G(z,L) =

where W is the Lambert W-function
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Example - 11

(Jones and Kreimer independently)
Combinatorial DSE:

T(z) =1— 2B, (T(i;)2>

Tree factorial Feynman rules.
Green function:

G(z,L) = (1 —3zL)'/3
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Back to something closer to the physics

Recall

x k-q
Gz, L) =1— = | d% .
(@, L) 7 / K2G (z,log k2/12)(k + )2 e

Manipulate using standard tricks
e plugin G(z,L) =1 - ~x(x)L*
o use DSz, = (—1)" log" (x)
e switch the order of [ and 0

to obtain

G(z,L) =1—2G(x,0_,) (e P — 1)F(p)|

p=0

Where F'(p) is the integral for the primitive regularized by a parameter
p which marks the insertion place.
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The question

Given

G(x,L)=1-— Zka(az, O_,) (e P — 1) Fr(p)| p=0
k>1

and
Fi.(p) = fk:,op_l + fr1+ frop+ -

How to solve for G(x, L)?



Rooted connected chord diagrams

We can solve this by a chord diagram expansion (with N. Marie for k = 1,
s = 2, arXiv:1210.5457, general case with M. Hihn).

A chord diagram is rooted if it has a distinguished vertex.
A chord diagram is connected if no set of chords can be separated from

the others by a line.
Eg:

These are really just irreducible matchings of points along a line.
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Recursive chord order

Let C be a connected rooted chord diagram. Order the chords recur-
sively:

e ¢y 1s the root chord

e Order the connected components of C'\ ¢; as they first appear run-
ning counterclockwise, D1, Do, .... Recursively order the chords of
D1, then of D5, and so on.
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Terminal chords

A chord is terminal if it only crosses chords which come before it in the
recursive chord order. Let

T <to < - <ty

be the terminal chords of . Then

() b(C) = tl and

C|—¢
® fo = Jtoto_r " Jts—taSta—ty (I) |

Eg:



Result

Theorem 1

G(x,L)=1-— Z (_il';)z Z SL‘|C|fob(C)—z'
i>1 '

C
b(C)>i

solves
G(z,L) =1—2G(z,0_,) (e 1* — 1)F(P)‘p:0

where

fo

F(p) = p + f1+ fop+ f3p® +-

A weighted result holds for the general case.



Conclusion

e The recursive shape of Dyson-Schwinger equations gives us a lot of
information.

e The combinatorics community has a family of toys with nice solu-
tions under the name of hook weight formulas.

e We can understand the series solution to a general family of Dyson-
Schwinger equations using a chord diagram expansion.
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Bonus — The renormalization group equation

The renormalization group equation is very important physically.
For us it says

<0% + B(az)(% + 7(:13)) G(z,L) =0

What happens if we apply it to the chord diagram expansion?
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Chord diagram decomposition

We can insert a rooted connected chord diagram C into another Cy, by
e choosing an interval of (s other than the one before the root
e putting the root of C; just before the root of C5 and
e putting the rest of (5 in the chosen interval

Eg:

Since the diagrams are connected C'; and (5 can be recovered.
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A classical recurrence

This decomposition is classical. Nijenhuis and Wilf (1978) use it to prove
the recurrence (originally due to Stein (1978) and rephrased by Riordan)

n—1

Sy, = Z(Zk — 1)SkSn—k for n > 2
k=1

where s, is the number of connected rooted chord diagrams with n
chords.

5-3



The recurrence translated

This recurrence can be extended to keep track of the terminal chords.

Let
gri= Y fofue)-i
C

|Cl=1
b(C)>i

where C' runs over rooted connected chord diagrams. Then

1—1

ki = 2(25 —1)g1.i—0gk—1¢ for 2 <k <4
(=1

This is exactly the renormalization group equation on chord diagrams.

This gives a combinatorial view of the renormalization group equation.
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