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Dyson-Schwinger equations

Consider a Dyson-Schwinger equation like

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2/µ2)(k + q)2
− · · ·

∣

∣

q2=µ2

where L = log(q2/µ2).

This is a little piece of Yukawa theory. (See Broadhurst and Kreimer
arXiv:hep-th/0012146, but blame me for the funny mathematician’s nor-
malization.)
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Today’s level of generality

We can deal with more than just this example. For today we need

• single scale, i.e. only propagator insertions into propagator func-
tions

• only one insertion place (can fix this, see arXiv:0810.2249)

But we can have

• any number of primitive diagrams

• a wide variety of theories
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Diagrammatics

Consider Dyson-Schwinger equations diagramatically.
Eg:
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B+ for graphs

A Feynman graph is primitive if it has no subdivergences. Write Bγ
+ for

insertion into the primitive Feynman graph γ.
Eg:

By weighting the insertions by an appropriate combinatorial coefficient
we can avoid double counting overlapping subdivergences.
Eg:

The coefficient for avoiding double counting is hairy
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Combinatorial Dyson-Schwinger equations

Using B+ we can rewrite the diagrammatic Dyson-Schwinger equations
as follows
Eg:

The coupling has become a counting variable.
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Rooted trees

Let’s get some experience with the simpler example of rooted trees in-
stead of Feynman graphs. This is the same as the situation with no
overlapping subdivergences by thinking of a Feynman graph as the tree
of its subdivergences.

Let B+(F ) be the tree constructed by adding a new root above each tree
from the forest F .
Eg:
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Expanding tree equations – I

Eg:
T = I+ xB+(T )
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Expanding tree equations – II

Eg:

T = I− xB+

(

1

T

)

This is a kind of combinatorial specification language using only sums,
products, and sequences.
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Trees, leading logs, and tree factorial

Staying with trees for the moment, the Feynman rules would give a map
from trees to some target algebra. For just the leading log part we would
have

t 7→ ctL
|t|

A nice such map comes from the tree factorial. For a vertex v of t, let
tv be the subtree rooted at v. Then

t! =

Eg:

The tree factorial Feynman rules are

t 7→
L|t|

t!
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Hook weight formulas

The combinatorics community has studied this in a different language
(see Jones, Y., arXiv:1412.6053 regarding unifying the communities).
Given a series B1, B2, . . . define the hook weight of a tree

wB(t) =
∏

v∈t

Bv

Then for a class T of trees we can form the weighted generating function

FB,T (x) =
∑

t∈T

wB(t)x
|t|

The question is, what choices of tree class and hook weights give nice
weighted series FB,T where nice either means a closed formula or a
combinatorial interpretation.

In our language this is, what choices of combinatorial Dyson-Schwinger

equation and (leading log) Feynman rules give nice Green function.
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Example - I

(Postnikov’s formula)
Combinatorial DSE:

T (x) = I+ xB+(T (x)
2)

Hook weight:

Bk = 1 +
1

k

Green function:

G(x, L) =
−W (−2xL)

2xL

where W is the Lambert W-function
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Example - II

(Jones and Kreimer independently)
Combinatorial DSE:

T (x) = I− xB+

(

1

T (x)2

)

Tree factorial Feynman rules.
Green function:

G(x, L) = (1− 3xL)1/3
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Back to something closer to the physics

Recall

G(x, L) = 1−
x

q2

∫

d4k
k · q

k2G(x, log k2/µ2)(k + q)2
− · · ·

∣

∣

q2=µ2

Manipulate using standard tricks

• plug in G(x, L) = 1−
∑

γk(x)L
k

• use ∂k
ρx

−ρ|ρ=0 = (−1)k logk(x)

• switch the order of
∫

and ∂

to obtain

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

Where F (ρ) is the integral for the primitive regularized by a parameter
ρ which marks the insertion place.
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The question

Given

G(x, L) = 1−
∑

k≥1

xkG(x, ∂−ρ)
1−sk(e−Lρ − 1)Fk(ρ)|ρ=0

and
Fk(ρ) = fk,0ρ

−1 + fk,1 + fk,2ρ+ · · ·

How to solve for G(x, L)?
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Rooted connected chord diagrams

We can solve this by a chord diagram expansion (with N. Marie for k = 1,
s = 2, arXiv:1210.5457, general case with M. Hihn).

A chord diagram is rooted if it has a distinguished vertex.
A chord diagram is connected if no set of chords can be separated from
the others by a line.
Eg:

These are really just irreducible matchings of points along a line.
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Recursive chord order

Let C be a connected rooted chord diagram. Order the chords recur-
sively:

• c1 is the root chord

• Order the connected components of Crc1 as they first appear run-
ning counterclockwise, D1, D2, . . .. Recursively order the chords of
D1, then of D2, and so on.

Eg:
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Terminal chords

A chord is terminal if it only crosses chords which come before it in the
recursive chord order. Let

t1 < t2 < · · · < tℓ

be the terminal chords of C. Then

• b(C) = t1 and

• fC = ftℓ−tℓ−1
· · · ft3−t2ft2−t1f

|C|−ℓ
0

Eg:
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Result

Theorem 1

G(x, L) = 1−
∑

i≥1

(−L)i

i!

∑

C
b(C)≥i

x|C|fCfb(C)−i

solves

G(x, L) = 1− xG(x, ∂−ρ)
−1(e−Lρ − 1)F (ρ)

∣

∣

ρ=0

where

F (ρ) =
f0
ρ

+ f1 + f2ρ+ f3ρ
2 + · · ·

A weighted result holds for the general case.
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Conclusion

• The recursive shape of Dyson-Schwinger equations gives us a lot of
information.

• The combinatorics community has a family of toys with nice solu-
tions under the name of hook weight formulas.

• We can understand the series solution to a general family of Dyson-
Schwinger equations using a chord diagram expansion.
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Bonus – The renormalization group equation

The renormalization group equation is very important physically.
For us it says

(

∂

∂L
+ β(x)

∂

∂x
+ γ(x)

)

G(x, L) = 0

What happens if we apply it to the chord diagram expansion?
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Chord diagram decomposition

We can insert a rooted connected chord diagram C1 into another C2, by

• choosing an interval of C2 other than the one before the root

• putting the root of C1 just before the root of C2 and

• putting the rest of C2 in the chosen interval

Eg:

Since the diagrams are connected C1 and C2 can be recovered.
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A classical recurrence

This decomposition is classical. Nijenhuis and Wilf (1978) use it to prove
the recurrence (originally due to Stein (1978) and rephrased by Riordan)

sn =

n−1
∑

k=1

(2k − 1)sksn−k for n ≥ 2

where sn is the number of connected rooted chord diagrams with n
chords.
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The recurrence translated

This recurrence can be extended to keep track of the terminal chords.
Let

gk,i =
∑

C
|C|=i
b(C)≥i

fCfb(C)−i

where C runs over rooted connected chord diagrams. Then

gk,i =

i−1
∑

ℓ=1

(2ℓ− 1)g1,i−ℓgk−1,ℓ for 2 ≤ k ≤ i

This is exactly the renormalization group equation on chord diagrams.

This gives a combinatorial view of the renormalization group equation.
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