Calculation of Isotope Yields for Radioactive Beam Production

Fatima Garcia

MSc Candidate Supervisors: Dr. C. Andreoiu, Dr. P. Kunz Simon Fraser University

fatimag@sfu.ca

June 16, 2015

Motivation

The Need for RIBs

The same tools are used for diverse applications.

Nuclear medicine

Nuclear astrophysics

Fundamental Nuclear Science

Wikibooks contributors, 'Nanotechnology', Wikibooks, The Free Textbook Project (Dec 10, 2013)

NASA, Goddard Space Flight Center

SFU Nuclear Science

Fatima Garcia (SFU)

Experiment

TRIUMF

3 / 23

Experiment

ISOL Technique & Production Mechanisms

Secondary Reactions

Goals

A Theoretical Framework

We are working on a simulation of the targetry at TRIUMF, to be used as a predictive model for future target material studies.

Kunz et al. TRIUMF ISAC Yield Database http://mis.triumf.ca/science/planning/yield/target

GEANT4

GEANT4: **GEometry ANd Tracking**

Monte Carlo based, C++ nuclear transport toolkit.

A C ArampiaBS	
🗃 🖬 २ १ ९ ९ 🚳 🗊	
Scene tree Help History	viewer-0 (OpenGLStoredQt) #
viewer-0 (OpenGLStoredQt)	
Scene tree : viewer-0 (OpenGLStore	
2 🦉	
	Output
	# Use this open statement to create a .wrl file suitable for
	#/vis/open VRML2FILE
	# # Disable auto refresh and quieten vis messages whilst scene
	and # trajectories are established:
	/vis/viewer/set/autoRefresh false /vis/verbose errors
Show all	clear output) Filter :
select item(s)	Session :

- Comprehensive geometry definition
- Well established physics models
- User specified physics

GEANT4 Collaboration

Targets

High temperature target container

The target material is placed inside a tantalum target container and placed along the beamline.

Product isotopes are then extracted in the form of ion beams.

Yield station

ISAC Yield Station

ISAC Yield Station Schematic

Kunz, P. Andreoiu, C. et al. Rev. Sci. Instrum. 85 (2014)

Standard Geometry

The simulated geometry consists of

- 5 disks
- Disk Thickness: 0.05 g/cm²
- Radius: 9.5 mm
- Material: Depleted Uranium

The incident particle:

- Proton
- 500 MeV

Physics Lists

Different physics lists operate at different energies and with different specifications:

List	Energy Range	Treatment of Nucleus
Bertini	0 MeV - 10 GeV	Three concentric shells of different densities
Binary	1 MeV - 2 GeV	Isotropic density
Liege	1 MeV - 20 GeV	Fermi gas in static potential

Each with its own advantages and disadvantages.

GEANT4 Collaboration. GEANT4 Physics Reference Manual. CERN (2014)

Results

Data

Simulation vs. Yield data

Differences arise from the challenges of doing a real experiment

Data output by the Liege Model

Isotopes generated at TRIUMF

Results

Data

Challenges

Yield rates are sensitive to:

- Isotope half life
- Transport

Inclusion of these factors may help in determining the most accurate physics list.

Comparison Results

Alkalis are efficiently released, and thus are used as comparisons between data and simulation.

Results for runs with 10^9 primaries, and scaled to $1 \ \mu A$

FLUKA Data: A. Laxdal, Private Communication 2015

Fatima Garcia (SFU)

Benchmarking

²³⁹Pu Yield Measurement

Via the ^{239}U neutron capture, TRIUMF has generated and implanted $^{239}\text{Pu}.$

This will be used as a further check of the model validity.

Alpha Spectrometry

Experiment specs

Half life	24110 years
Implantation time	12 hrs
Decay time	151 days
Measurement time	20 days
Activity	0.32 Bq

Fatima Garcia (SFU)

²³⁹Pu Production Rates

lsobar	Bertini	Binary	Liege
²³⁹ U	3.12e9	3.25e10	3.23e10
²³⁹ Np	1.68e7	5.46e7	6.29e7
²³⁹ Pu	3.12e4	2.42e5	3.28e5

Production rates given in atoms/sec and scaled to 1 μA

Source	²³⁹ Pu Production
Experiment	~ 1 e7
Bertini	4.10e9
Binary	4.25e10
Liege	4.24e10

Rates given in nuclei/sec

Fatima Garcia (SFU)

Isotopes for Nuclear Medicine

Actinium and Radium isotope rates are important quantities in nuclear medicine

Rates given in isotopes/sec

Current Status

So far I have:

- Compared available physics lists
- Predicted isotope output during online experiments
- Validated the model via ²³⁹Pu production
- Extended the scope by predicting medical isotope output

The next steps include:

- Continue optimization
- Implement different target materials

Different Targets for Different Isotopes

Data is available for:

- Silicon
- Titanium
- Nickel
- Zirconium
- Niobium
- Tantalum
- Thorium

ISAC Yield Database

Isotope beams available at TRIUMF

Kunz et al. TRIUMF ISAC Yield Database. http://mis.triumf.ca/science/planning/yield/beam

Fatima Garcia (SFU)

New Tool for Future Experiments

The purpose of this predictive model is to provide a tool to guide future target materials studies and upcoming experiments.

Chart of Nuclides

Acknowledgements

- Dr. C. Andreoiu
- Dr. P. Kunz
- A. Laxdal
- SFU Chemistry
- TRIUMF
- SFU Graduate Studies
- NSERC

Thank you

Comparison Results (cont.)

A. Laxdal, Private Communication 2015

Fatima Garcia (SFU)

Errors

Each point that comprises the curve has its own error associated with it.

Calculated using the average and standard deviation from eight runs, each with 10^8 primaries.

Many different nuclear codes are available:

Code	Strengths	Weaknesses
	Commercial maintenance	Proprietary
TLONA	User friendly	Fixed physics models
Silberberg-Tsao	Fragmentation code	Theoretical formalism
	Comprehensive	Antiquated
	Open source software	Extensive code
	Worldwide collaboration	Not user friendly

For its capabilities and uses, GEANT4 will be the toolkit used.

Böhlen, T. et al. Nucl. Data Sheets 120 (2014); Shinn, J. et al. NASA Technical Paper 3350 (1993) Agostinelli, S. et al. Nuc. Instrum. Meth. 506 (2003)

Fatima Garcia (SFU)

- Binary cascade: time dependent hadron-nuclear collision
- Leige INCL++: time dependent with ordered interactions
- Pre-compound: handles isomers
- De-excitation: resolves excess energy near equilibrium

Yield Station

The yield station is capable of:

- α, β, γ decay measurements
- Lifetime measurements
- Beam characterization

Yield station schematic

The actinides are used for these experiments as they are:

- Highly refractory
- Very large and massive; U(IV) $r_{ionic} = 0.89$ Å, Th(IV) $r_{ionic} = 0.94$ Å

Hayes, C., Leznoff, D.B., Coord. Chem. Rev. 266-267 (2014) Rough, F.A., Chubb, W. eds. doi:10.2172/4176185 (1960)

Fatima Garcia (SFU)

For comparison the alkalis will be used.

- Very little chemistry at operating temperature (\sim 2000 $^{\circ}\text{C})$
- Surface ionization is efficient and well understood
- Not retained as molecules

Target Materials and Specs

- Tantalum
- 90 55 x 55 mm fins to dissipate heat
- Maintained at ${\sim}2000~^\circ\text{C}$

Bricault, P., et al. Nuc. Instrum. Meth. B, 204 (2003) Schmor, P.W., Nuc. Phys. A, 701 (2002)

Fatima Garcia (SFU)