Photo-detection with SiPMs in particle physics and material science

Fabrice Retière

TRIUMF

Motivation: ionizing radiation detection

TRIUMF

Photo-detector specifications for radiation detection

- Fast:
 - pulse width<100ns</p>
 - single photon timing resolution<100ps
- High gain for single photon detection
- Multi-photon counting capabilities (up to few 1,000s)
- Efficiency > 20%
- For some applications, no sensitivity to magnetic field

Typical light sources	Wavelength	Time constant	Photons per keV	Applications
Cerenkov	Power law from EUV to red	Prompt	N/A <1	Particle and astro- particle physics
Plastic scint. (BC408)	425nm	2.1ns	11	Physics, dosimetry,
Xenon scint.	175+-5nm	2.2 (5%)/34ns	~40	Astro-particle physics
LaBr3	380nm	16ns	63	Gamma Ray (PET)
LSO	420nm	41ns	32	Gamma Ray (PET)
ur BGO	480nm	300ns	8	Low cost Gamma rav

Single Photon Avalanche Detector

- Avalanche photo-diode operated above breakdown
 - Runaway avalanche due to impact ionization
- with quenching circuit
 - Passive (resistor)
 - Active (transistor + quenching detection)

Geiger-Mode Pixelated Photon Detector, aka Silicon Photo-multipliers

Array of SPADs

- Passive quenching: Each micro-cell with individual quenching resistor
- Active quenching: transistors on each microcell
- Photon counting by counting micro-cells
 - 25 to 100 μm pitch microcells
 - Typical device sizes 1×1mm², 1.3×1.3mm², 3×3mm²

The analog SiPM family

Hardhard - PhotoDet 2012

Photo-detection efficiency

- Peak at ~30% at 420nm
 - Fill factor ~60%
 - Depend directly on pixel size
 - Probability of starting an avalanche ~50%
 - Being improved
- Strong dependence on operating voltage

Nuisance 1: dark noise

- Thermally generated charge carriers trigger avalanches
 - From depleted region, surface or bulk + diffusion
- Rate of single micro-cell avalanche

A. Vacheret et al., NIM A 656 p. 69 (2011)

 Expected temperature dependence with E=1.1eV:

$$R_{\rm DN}\left(\Delta V,T\right) = A \cdot \left(\Delta V - V_0\right) \cdot \left(\frac{T}{298}\right)^{3/2} \cdot e^{-\left(\frac{E}{2kT} - \frac{E}{2k \cdot 298}\right)}$$

Nuisance 2: correlated avalanches

Big worry at first because at high bias voltage

one gets large (>10 PE) dark pulses

Cross-talk

Photons emitted during
 1 avalanche trigger an
 avalanche in neighboring
 cell(s)

After-pulse

 Expected to be due to trapping of carriers produced in the avalanche and released at a later time

Origin(s) of cross-talk and after-pulsing

Cross-talk

- Prompt = by definition
- Origin: photons produced in the avalanche absorbed in neighboring high field region

After-pulse

- Delayed = by definition
- "Usual" origin: carrier produced in the avalanche trapped on impurities
- Alternative origin: photons absorbed in bulk
 - Delay due to diffusion
 - Lets test this hypothesis

Probing the source of after-pulsing

Demonstrating contribution of holes from the n substrate

Dealing with correlated avalanches

- Hamamatsu corrected the issues:
 - Add trench to prevent cross-talk
 - Add n++ layer (?) to prevent diffusion from substrate
- Claim to drastically suppress correlated avalanches
 - Very good news to be confirmed

Application

- SiPM for detecting liquid Xenon scintillation light
 - Motivation:nEXO

The future: 3D integration

Merci

ETRIUMF

Corresponding electrical circuit (Hamamatsu case)

Parameters for T2K MPPC

 C_{pixel} = 90 fF, R_{quench} = 150 k Ω Parasitic C_{quench} ~ 4 fF, C_{line} ~ 10 pF (parasitic)

Peak current: I = $(V_{op} - V_{breakdown})$ / $R_{quench} \sim 5-10 \,\mu A$ Only 0.5mV on 50Ω . Hard to see directly on a scope

Charge per photon Q = $(V_{op} - V_{breakdown})$ $C_{pixel} \sim 90-160$ fC Gain for 1 e-h pair created up to 1 million

Diode

esistor

m lines

SiPMs vs PMTs

Parameters	PMT	SiPM
Photo-detection efficiency	15-35%	15-35% 🗷
Gain	10 ⁶ -10 ⁷	10 ⁵ -10 ⁶
Gain fluctuations	50%	1%
Dark noise pulse at 20°C (Hz/mm²)	<1	10 ⁵ -10 ⁶
Correlated avalanche (after-pulse)	10-20%	5-30%
Leakage current	μA-mA (base)	100nA/mm ²
Bias voltage (V)	1000-2500	25-75
Capacitance	1-50pF	35pF/mm ²
Single Photon timing resolution (ps, FWHM)	300-3,000	150-500
Sensitivity to magnetic field	Strong	None
Compactness	Poor	Excellent
Ruggedness	Decent	Good
Price (\$/cm2)	~250	~250\\

June

17

Quenching and recovery

What if not all the pixels fire at the same time?

118ne 4Need Monte Carlo simulations

Cross-talk

Measurement

- Take data at low light
- Histogram <u>prompt</u> (with few ns) pulse charge
- Poisson parameters measured from probability of measuring 0
- Cross-talk = measured number of avalanche / Poisson expectation
- Expected sensitivity to micro-cell location
 - Scaling is not straightforward however

June 4

Gain

 $\Delta V (V)$

- Gain = $C_{pixel} \Delta V$
 - Linearity may not be perfect
- $\Delta V = V_{op} V_{BD}$
- V_{BD} breakdown voltage
 - Temperature variation 54±3 mV/°C
 - This number is surprisingly hard to measure better than 10%

ETRIUMF

Gain and breakdown voltage variation across 17,686 MPPCs

- Large variation of breakdown voltage
 - Require operating
 MPPCs at different
 operating voltage
- Small gain variations between MPPCs
 - 5.3% variation

Dark noise variations between MPPCs

- Significant variation between MPPCs
 - Hot pixels?
- Significantly lower dark noise than specified

Yokoyama et al., Nucl. Inst. Meth. A 622, 567 (2010))

Side comment outside T2K Cryogenic dark noise for MPPCs

J. Csathy et al. NIM A 654 (2011) 225

Electron vs hole triggered avalanches

Dark noise

- Dark noise rate 100-500 kHz/mm²
 - MHz for 10 mm²!
 - Single avalanche rate
 - Poisson statistics for multiavalanche
 - Correlated avalanches make things worse
 - 1 avalanche may trigger another one
- Need lots of light or/and narrow timing window
 - Border line for BGO: slow (300 ns time constant) and not very bright
 - Investigating for nuclear physics experiments at TRIUMF
- Or need to cool below -100°C

Self trigger rate due to dark noise For 200kHz/mm² and 1.44 cm² active area

SiPM moving to larger area applications

- Successful application of SiPMs up to 3×3 mm²
 - Matrices routinely used for PET: 4x4 pixels ~ 1.5 cm² total

 Can we join all the 16 SiPMs together?

- Cheap because of economy of scale
 - PET = big user

Now looking at delayed correlated avalanches

After-pulsing quantitative estimate

A. Vacheret et al., NIM A 656 p. 69 (2011)

Use external light source mimicking internal light source

Internal light source

Spectrum of photons emitted in MPPC avalanches

R. Mirzoyan , R.Kosyra H.-G.Moser , June 4NIMA 610 (2009) 98–100

External light source

- Hamamatsu PLP-10
- Pulse width and jitter<80ps

Wavelength	Att. Length in Si
404 nm	0.12 μm
467 nm	0.55 μm
637 nm	3.2 μm
820 nm*	14.1 μm

^{*} Laser system lent to us by Hamamatsu thanks to Y. Iwai